Suppr超能文献

量化头发和皮肤特征对信号质量的影响并给出改进的实用建议。

Quantifying the Impact of Hair and Skin Characteristics on Signal Quality with Practical Recommendations for Improvement.

作者信息

Yücel Meryem A, Anderson Jessica E, Rogers De'Ja, Hajirahimi Parisa, Farzam Parya, Gao Yuanyuan, Kaplan Rini I, Braun Emily J, Mukadam Nishaat, Duwadi Sudan, Carlton Laura, Beeler David, Butler Lindsay K, Carpenter Erin, Girnis Jaimie, Wilson John, Tripathi Vaibhav, Zhang Yiwen, Sorger Bettina, von Lühmann Alexander, Somers David C, Cronin-Golomb Alice, Kiran Swathi, Ellis Terry D, Boas David A

机构信息

Neurophotonics Center, Boston University, Boston, MA 02215, USA.

Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.

出版信息

bioRxiv. 2024 Oct 28:2024.10.28.620644. doi: 10.1101/2024.10.28.620644.

Abstract

Functional Near-Infrared Spectroscopy (fNIRS) holds transformative potential for research and clinical applications in neuroscience due to its non-invasive nature and adaptability to real-world settings. However, despite its promise, fNIRS signal quality is sensitive to individual differences in biophysical factors such as hair and skin characteristics, which can significantly impact the absorption and scattering of near-infrared light. If not properly addressed, these factors risk biasing fNIRS research by disproportionately affecting signal quality across diverse populations. Our results quantify the impact of various hair properties, skin pigmentation as well as head size, sex and age on signal quality, providing quantitative guidance for future hardware advances and methodological standards to help overcome these critical barriers to inclusivity in fNIRS studies. We provide actionable guidelines for fNIRS researchers, including a suggested metadata table and recommendations for cap and optode configurations, hair management techniques, and strategies to optimize data collection across varied participants. This research paves the way for the development of more inclusive fNIRS technologies, fostering broader applicability and improved interpretability of neuroimaging data in diverse populations.

摘要

功能近红外光谱技术(fNIRS)因其非侵入性以及对现实环境的适应性,在神经科学研究和临床应用方面具有变革性潜力。然而,尽管前景广阔,但fNIRS信号质量对头发和皮肤特征等生物物理因素的个体差异很敏感,这些因素会显著影响近红外光的吸收和散射。如果不妥善解决,这些因素可能会因对不同人群的信号质量产生不成比例的影响而使fNIRS研究产生偏差。我们的研究结果量化了各种头发特性、皮肤色素沉着以及头部大小、性别和年龄对信号质量的影响,为未来硬件改进和方法标准提供了定量指导,以帮助克服fNIRS研究中包容性的这些关键障碍。我们为fNIRS研究人员提供了可行的指导方针,包括建议的元数据表以及关于帽式和光极配置、头发管理技术以及优化不同参与者数据收集策略的建议。这项研究为开发更具包容性的fNIRS技术铺平了道路,促进了神经影像数据在不同人群中的更广泛应用和更好的解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d005/11565806/1b0a6af27fa0/nihpp-2024.10.28.620644v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验