Hoshi Toru, Suzuki Masashige, Aoyagi Takao
Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan.
Department of Materials and Applied Chemistry, Graduate School of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan.
Gels. 2024 Aug 6;10(8):516. doi: 10.3390/gels10080516.
We revealed that the encapsulation of enzyme-immobilized silica particles in hollow-type spherical bacterial cellulose (HSBC) gels enables the use of the inside of HSBC gels as a reaction field. The encapsulation of horseradish peroxidase (HRP)-immobilized silica particles (Si-HRPs, particle size: 40-50 μm) within HSBC gels was performed by using a BC gelatinous membrane produced at the interface between suspension attached onto an alginate gel containing Si-HRPs and silicone oil. After the biosynthesis of the BC gelatinous membrane, formed from cellulose nanofiber networks, the alginate gel was removed via immersion in a phosphate-buffered solution. Si-HRP encapsulated HSBC gels were reproducibly produced using our method with a yield of over 90%. The pore size of the network structure of the BC gelatinous membrane was less than 1 μm, which is significantly smaller than the encapsulated Si-HRPs. Consequently, the encapsulated Si-HRPs could neither pass through the BC gelatinous membrane nor leak from the interior cavity of the HSBC gel. The activity of the encapsulated HRPs was detected using the 3,3',5,5'-tetramethylbenzidine (TMB)-HO system, demonstrating that this method can encapsulate the enzyme without inactivation. Since HSBC gels are composed of a network structure of biocompatible cellulose nanofibers, immune cells cannot enter the hollow interior, thus, the enzyme-immobilized particles encapsulated inside the HSBC gel are protected from immune-cell attacks. The encapsulation technique demonstrated in this study is expected to facilitate the delivery of enzymes and catalysts that are not originally present in the in vivo environment.
我们发现,将固定有酶的二氧化硅颗粒包裹在中空型球形细菌纤维素(HSBC)凝胶中,能够将HSBC凝胶的内部用作反应场。通过使用在附着于含有固定辣根过氧化物酶(HRP)的二氧化硅颗粒(Si-HRPs,粒径:40-50μm)的藻酸盐凝胶和硅油之间的界面处产生的BC凝胶膜,将固定有HRP的二氧化硅颗粒包裹在HSBC凝胶内。在由纤维素纳米纤维网络形成的BC凝胶膜生物合成后,通过浸入磷酸盐缓冲溶液中去除藻酸盐凝胶。使用我们的方法可重复生产包裹有Si-HRP的HSBC凝胶,产率超过90%。BC凝胶膜网络结构的孔径小于1μm,这明显小于包裹的Si-HRPs。因此,包裹的Si-HRPs既不能穿过BC凝胶膜,也不会从HSBC凝胶的内腔泄漏。使用3,3',5,5'-四甲基联苯胺(TMB)-HO系统检测包裹的HRPs的活性,表明该方法可以在不失活的情况下包裹酶。由于HSBC凝胶由生物相容性纤维素纳米纤维的网络结构组成,免疫细胞无法进入中空内部,因此,包裹在HSBC凝胶内的固定有酶的颗粒受到保护,免受免疫细胞攻击。本研究中展示的包裹技术有望促进原本不存在于体内环境中的酶和催化剂的递送。