Suppr超能文献

基于挥发组学的人类精液质量评估创新方法

Innovative Approach for Human Semen Quality Assessment Based on Volatilomics.

作者信息

Capone Simonetta, Forleo Angiola, Radogna Antonio Vincenzo, Longo Valentina, My Giulia, Genga Alessandra, Ferramosca Alessandra, Grassi Giuseppe, Casino Flavio, Siciliano Pietro, Notari Tiziana, Pappalardo Sebastiana, Piscopo Marina, Montano Luigi

机构信息

National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), 73100 Lecce, Italy.

Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy.

出版信息

Toxics. 2024 Jul 27;12(8):543. doi: 10.3390/toxics12080543.

Abstract

The volatilome profile of some biofluids (blood, urine, and human semen) identified by Solid-Phase Microextraction-Gas Chromatography/Mass Spectrometry (SPME-GC/MS) and collected from young men living in two high-pollution areas in Italy, i.e., Land of Fires and Valley of Sacco River, have been coupled to sperm parameters obtained by spermiogram analysis to build general multiple regression models. Panels of volatile organic compounds (VOCs) have been selected to optimize the models and used as predictive variables to estimate the different sperm quality parameters (sperm cell concentration, total and progressive motility/immotile cells, total/head/neck/tail morphology anomalies, semen round cell concentration). The results of the multiple linear regression models based on the different subgroups of data joining VOCs from one/two or three biofluids have been compared. Surprisingly, the models based on blood and urine VOCs have allowed an excellent estimate of spermiogram values, paving the way towards a new method of indirect evaluation of semen quality and preventive screening. The significance of VOCs in terms of toxicity and dangerousness was discussed with the support of chemical databases available online.

摘要

通过固相微萃取-气相色谱/质谱联用技术(SPME-GC/MS)鉴定并从生活在意大利两个高污染地区(即火之土地和萨科河谷)的年轻男性身上采集的一些生物流体(血液、尿液和人类精液)的挥发物谱,已与通过精子图谱分析获得的精子参数相结合,以建立一般多元回归模型。已选择挥发性有机化合物(VOCs)面板来优化模型,并将其用作预测变量,以估计不同的精子质量参数(精子细胞浓度、总活力和渐进性活力/不动细胞、总/头部/颈部/尾部形态异常、精液圆形细胞浓度)。比较了基于来自一种/两种或三种生物流体的VOCs的数据不同亚组的多元线性回归模型的结果。令人惊讶的是,基于血液和尿液VOCs的模型能够出色地估计精子图谱值,为精液质量的间接评估和预防性筛查的新方法铺平了道路。在线化学数据库的支持下,讨论了VOCs在毒性和危险性方面的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa88/11360181/7cf47de881ee/toxics-12-00543-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验