Suppr超能文献

基于人工智能算法的平扫 CT 对小面积肺栓塞的检出率改善 - 单中心回顾性研究。

Improved detection of small pulmonary embolism on unenhanced computed tomography using an artificial intelligence-based algorithm - a single centre retrospective study.

机构信息

Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.

Pattern Recognition Lab, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany.

出版信息

Int J Cardiovasc Imaging. 2024 Nov;40(11):2293-2304. doi: 10.1007/s10554-024-03222-8. Epub 2024 Aug 28.

Abstract

To preliminarily verify the feasibility of a deep-learning (DL) artificial intelligence (AI) model to localize pulmonary embolism (PE) on unenhanced chest-CT by comparison with pulmonary artery (PA) CT angiography (CTA). In a monocentric study, we retrospectively reviewed 99 oncological patients (median age in years: 64 (range: 28-92 years); percentage of female: 39.4%) who received unenhanced and contrast-enhanced chest CT examinations in one session between January 2020 and October 2022 and who were diagnosed incidentally with PE. Findings in the unenhanced images were correlated with the contrast-enhanced images, which were considered the gold standard for central, segmental and subsegmental PE. The new algorithm was trained and tested based on the 99 unenhanced chest-CT image data sets. Based on them, candidate boxes, which were output by the model, were post-processed by evaluating whether the predicted box intersects with the patient's lung segmentation at any position. The AI-based algorithm proved to have an overall sensitivity of 54.5% for central, of 81.9% for segmental and 80.0% for subsegmental PE if taking n = 20 candidate boxes into account. Depending on the localization of the pulmonary embolism, the detection rate for only one box was: 18.1% central, 34.7% segmental and 0.0% subsegmental. The median volume of the clots differed significantly between the three subgroups and was 846.5 mm (IQR:591.1-964.8) in central, 201.3 mm (IQR:98.3-390.9) in segmental and 110.6 mm (IQR:94.3-128.0) in subsegmental PA (p < 0.05). The new algorithm proved to have high sensitivity in detecting PE in particular in segmental/subsegmental localization and may guide to decide whether a second contrast enhanced CT is necessary.

摘要

为了通过与肺动脉(PA)CT 血管造影(CTA)比较,初步验证深度学习(DL)人工智能(AI)模型在非增强胸部 CT 上定位肺栓塞(PE)的可行性。在一项单中心研究中,我们回顾性分析了 99 例接受胸部 CT 平扫和增强检查的肿瘤患者(中位年龄:64 岁[范围:28-92 岁];女性百分比:39.4%),这些患者在 2020 年 1 月至 2022 年 10 月期间的一次检查中意外诊断出 PE。非增强图像中的发现与增强图像相关联,增强图像被认为是中央、节段和亚段 PE 的金标准。新算法是基于 99 例非增强胸部 CT 图像数据集进行训练和测试的。基于这些数据集,通过评估模型输出的候选框是否在任何位置与患者的肺分割相交,对候选框进行后处理。如果考虑到 20 个候选框,基于 AI 的算法对中央型、节段型和亚段型 PE 的总体敏感性分别为 54.5%、81.9%和 80.0%。如果只考虑一个候选框的定位,检测率为:中央型 18.1%、节段型 34.7%和亚段型 0.0%。血栓的中位体积在三组之间有显著差异,中央型为 846.5mm(IQR:591.1-964.8),节段型为 201.3mm(IQR:98.3-390.9),亚段型为 110.6mm(IQR:94.3-128.0)(p<0.05)。新算法在检测 PE 方面表现出很高的敏感性,特别是在节段/亚段定位,可能有助于决定是否需要进行第二次增强 CT 检查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验