Department of Radiology, Isala Hospital, Dr. Van Heesweg 2, 8025 AB, Zwolle, The Netherlands.
Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands.
Eur Radiol. 2024 Jan;34(1):367-373. doi: 10.1007/s00330-023-10029-z. Epub 2023 Aug 3.
The purpose of this study was to evaluate the incremental value of artificial intelligence (AI) compared to the diagnostic accuracy of radiologists alone in detecting incidental acute pulmonary embolism (PE) on routine portal venous contrast-enhanced chest computed tomography (CT).
CTs of 3089 consecutive patients referred to the radiology department for a routine contrast-enhanced chest CT between 27-5-2020 and 31-12-2020, were retrospectively analysed by a CE-certified and FDA-approved AI algorithm. The diagnostic performance of the AI was compared to the initial report. To determine the reference standard, discordant findings were independently evaluated by two readers. In case of disagreement, another experienced cardiothoracic radiologist with knowledge of the initial report and the AI output adjudicated.
The prevalence of acute incidental PE in the reference standard was 2.2% (67 of 3089 patients). In 25 cases, AI detected initially unreported PE. This included three cases concerning central/lobar PE. Sensitivity of the AI algorithm was significantly higher than the outcome of the initial report (respectively 95.5% vs. 62.7%, p < 0.001), whereas specificity was very high for both (respectively 99.6% vs 99.9%, p = 0.012). The AI algorithm only showed a slightly higher amount of false-positive findings (11 vs. 2), resulting in a significantly lower PPV (85.3% vs. 95.5%, p = 0.047).
The AI algorithm showed high diagnostic accuracy in diagnosing incidental PE, detecting an additional 25 cases of initially unreported PE, accounting for 37.3% of all positive cases.
Radiologist support from AI algorithms in daily practice can prevent missed incidental acute PE on routine chest CT, without a high burden of false-positive cases.
• Incidental pulmonary embolism is often missed by radiologists in non-diagnostic scans with suboptimal contrast opacification within the pulmonary trunk. • An artificial intelligence algorithm showed higher sensitivity detecting incidental pulmonary embolism on routine portal venous chest CT compared to the initial report. • Implementation of artificial intelligence support in routine daily practice will reduce the number of missed incidental pulmonary embolism.
本研究旨在评估人工智能(AI)与放射科医生单独诊断常规门静脉对比增强胸部 CT 时偶然发现的急性肺栓塞(PE)的诊断准确性相比的增量价值。
回顾性分析了 2020 年 5 月 27 日至 12 月 31 日期间因常规增强胸部 CT 而转至放射科的 3089 例连续患者的 CT 扫描。该研究使用了经过 CE 认证和 FDA 批准的 AI 算法。比较了 AI 的诊断性能与初始报告。为了确定参考标准,对不一致的发现由两位读者独立评估。如果存在分歧,则由另一位具有初始报告和 AI 输出知识的经验丰富的心胸放射科医生进行裁决。
参考标准中急性偶然性 PE 的患病率为 2.2%(3089 例患者中有 67 例)。在 25 例中,AI 最初检测到未报告的 PE。这包括 3 例中央/叶性 PE。AI 算法的敏感性明显高于初始报告(分别为 95.5%和 62.7%,p<0.001),而特异性对两者均非常高(分别为 99.6%和 99.9%,p=0.012)。AI 算法仅显示出略多的假阳性发现(11 与 2),导致较低的阳性预测值(85.3%与 95.5%,p=0.047)。
AI 算法在诊断偶然性 PE 方面具有较高的诊断准确性,检测到 25 例最初未报告的 PE,占所有阳性病例的 37.3%。
在日常实践中,AI 算法可以支持放射科医生,防止在常规胸部 CT 中漏诊偶然发生的急性 PE,而不会导致大量假阳性病例。
偶然性的肺栓塞在非诊断性扫描中常被放射科医生漏诊,此时肺动脉主干内对比增强不充分。
与初始报告相比,人工智能算法在常规门静脉胸部 CT 上检测偶然性肺栓塞的敏感性更高。
在日常实践中实施人工智能支持将减少偶然性肺栓塞的漏诊数量。