Suppr超能文献

用于同时配准和估计噪声、稀疏和碎片化功能数据的贝叶斯框架。

Bayesian Framework for Simultaneous Registration and Estimation of Noisy, Sparse and Fragmented Functional Data.

作者信息

Matuk James, Bharath Karthik, Chkrebtii Oksana, Kurtek Sebastian

机构信息

Department of Statistics, The Ohio State University.

School of Mathematical Sciences, University of Nottingham.

出版信息

J Am Stat Assoc. 2022;117(540):1964-1980. doi: 10.1080/01621459.2021.1893179. Epub 2021 Mar 29.

Abstract

In many applications, smooth processes generate data that is recorded under a variety of observational regimes, including dense sampling and sparse or fragmented observations that are often contaminated with error. The statistical goal of registering and estimating the individual underlying functions from discrete observations has thus far been mainly approached sequentially without formal uncertainty propagation, or in an application-specific manner by pooling information across subjects. We propose a unified Bayesian framework for simultaneous registration and estimation, which is flexible enough to accommodate inference on individual functions under general observational regimes. Our ability to do this relies on the specification of strongly informative prior models over the amplitude component of function variability using two strategies: a data-driven approach that defines an empirical basis for the amplitude subspace based on training data, and a shape-restricted approach when the relative location and number of extrema is well-understood. The proposed methods build on the elastic functional data analysis framework to separately model amplitude and phase variability inherent in functional data. We emphasize the importance of uncertainty quantification and visualization of these two components as they provide complementary information about the estimated functions. We validate the proposed framework using multiple simulation studies and real applications.

摘要

在许多应用中,平稳过程会生成在各种观测模式下记录的数据,包括密集采样以及稀疏或碎片化观测,而这些观测往往会受到误差的影响。到目前为止,从离散观测中配准和估计各个潜在函数的统计目标,主要是通过顺序方式实现,没有正式的不确定性传播,或者是以特定于应用的方式通过汇总不同受试者的信息来实现。我们提出了一个用于同时配准和估计的统一贝叶斯框架,该框架足够灵活,能够在一般观测模式下对各个函数进行推断。我们之所以能够做到这一点,依赖于使用两种策略对函数变异性的幅度分量指定强信息先验模型:一种是数据驱动方法,基于训练数据为幅度子空间定义经验基础;另一种是形状受限方法,当极值的相对位置和数量能够被很好理解时使用。所提出的方法建立在弹性函数数据分析框架之上,以分别对函数数据中固有的幅度和相位变异性进行建模。我们强调对这两个分量进行不确定性量化和可视化的重要性,因为它们提供了关于估计函数的互补信息。我们使用多个模拟研究和实际应用对所提出的框架进行了验证。

相似文献

3
Quantifying Registration Uncertainty With Sparse Bayesian Modelling.基于稀疏贝叶斯模型的配准不确定性量化。
IEEE Trans Med Imaging. 2017 Feb;36(2):607-617. doi: 10.1109/TMI.2016.2623608. Epub 2016 Nov 1.
6
Bayesian estimation of the discrete coefficient of determination.离散决定系数的贝叶斯估计。
EURASIP J Bioinform Syst Biol. 2016 Jan 15;2016(1):1. doi: 10.1186/s13637-015-0035-4. eCollection 2016 Dec.

引用本文的文献

1
Sequential Bayesian Registration for Functional Data.功能数据的序贯贝叶斯配准
Stat Comput. 2025;35(4):108. doi: 10.1007/s11222-025-10640-8. Epub 2025 May 27.
2
Topo-Geometric Analysis of Variability in Point Clouds Using Persistence Landscapes.使用持久景观对点云变异性进行拓扑几何分析。
IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):11035-11046. doi: 10.1109/TPAMI.2024.3451328. Epub 2024 Nov 6.
3
Bayesian function registration with random truncation.贝叶斯函数随机截断配准。
PLoS One. 2023 Jul 7;18(7):e0287734. doi: 10.1371/journal.pone.0287734. eCollection 2023.
4
Timeline Registration for Electronic Health Records.电子健康记录的时间线注册
AMIA Jt Summits Transl Sci Proc. 2023 Jun 16;2023:291-299. eCollection 2023.

本文引用的文献

2
Distribution on Warp Maps for Alignment of Open and Closed Curves.用于开放曲线和封闭曲线对齐的经纱图分布
J Am Stat Assoc. 2020;115(531):1378-1392. doi: 10.1080/01621459.2019.1632066. Epub 2019 Jul 22.
3
Nonparametric Bayes Models of Fiber Curves Connecting Brain Regions.连接脑区的纤维曲线的非参数贝叶斯模型。
J Am Stat Assoc. 2019;114(528):1505-1517. doi: 10.1080/01621459.2019.1574582. Epub 2019 Apr 30.
4
Automatic Detection and Uncertainty Quantification of Landmarks on Elastic Curves.弹性曲线上地标点的自动检测与不确定性量化
J Am Stat Assoc. 2019;114(527):1002-1017. doi: 10.1080/01621459.2018.1527224. Epub 2019 Mar 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验