Matuk James, Bharath Karthik, Chkrebtii Oksana, Kurtek Sebastian
Department of Statistics, The Ohio State University.
School of Mathematical Sciences, University of Nottingham.
J Am Stat Assoc. 2022;117(540):1964-1980. doi: 10.1080/01621459.2021.1893179. Epub 2021 Mar 29.
In many applications, smooth processes generate data that is recorded under a variety of observational regimes, including dense sampling and sparse or fragmented observations that are often contaminated with error. The statistical goal of registering and estimating the individual underlying functions from discrete observations has thus far been mainly approached sequentially without formal uncertainty propagation, or in an application-specific manner by pooling information across subjects. We propose a unified Bayesian framework for simultaneous registration and estimation, which is flexible enough to accommodate inference on individual functions under general observational regimes. Our ability to do this relies on the specification of strongly informative prior models over the amplitude component of function variability using two strategies: a data-driven approach that defines an empirical basis for the amplitude subspace based on training data, and a shape-restricted approach when the relative location and number of extrema is well-understood. The proposed methods build on the elastic functional data analysis framework to separately model amplitude and phase variability inherent in functional data. We emphasize the importance of uncertainty quantification and visualization of these two components as they provide complementary information about the estimated functions. We validate the proposed framework using multiple simulation studies and real applications.
在许多应用中,平稳过程会生成在各种观测模式下记录的数据,包括密集采样以及稀疏或碎片化观测,而这些观测往往会受到误差的影响。到目前为止,从离散观测中配准和估计各个潜在函数的统计目标,主要是通过顺序方式实现,没有正式的不确定性传播,或者是以特定于应用的方式通过汇总不同受试者的信息来实现。我们提出了一个用于同时配准和估计的统一贝叶斯框架,该框架足够灵活,能够在一般观测模式下对各个函数进行推断。我们之所以能够做到这一点,依赖于使用两种策略对函数变异性的幅度分量指定强信息先验模型:一种是数据驱动方法,基于训练数据为幅度子空间定义经验基础;另一种是形状受限方法,当极值的相对位置和数量能够被很好理解时使用。所提出的方法建立在弹性函数数据分析框架之上,以分别对函数数据中固有的幅度和相位变异性进行建模。我们强调对这两个分量进行不确定性量化和可视化的重要性,因为它们提供了关于估计函数的互补信息。我们使用多个模拟研究和实际应用对所提出的框架进行了验证。