Suppr超能文献

利用拓扑特征和深度学习进行自闭症分类:一个警示故事。

Autism Classification Using Topological Features and Deep Learning: A Cautionary Tale.

作者信息

Rathore Archit, Palande Sourabh, Anderson Jeffrey S, Zielinski Brandon A, Fletcher P Thomas, Wang Bei

机构信息

University of Utah, Salt Lake City, UT 84112, USA.

University of Virginia, Charlottesville, VA 22904-4259, USA.

出版信息

Med Image Comput Comput Assist Interv. 2019 Oct;11766:736-744. doi: 10.1007/978-3-030-32248-9_82. Epub 2019 Oct 10.

Abstract

The identification of autistic individuals using resting state functional connectivity networks can provide an objective diagnostic method for autism spectrum disorder (ASD). The present state-of-the-art machine learning model using deep learning has a classification accuracy of 70.2% on the ABIDE (Autism Brain Imaging Data Exchange) data set. In this paper, we explore the utility of topological features in the classification of ASD versus typically developing control subjects. These topological features have been shown to provide a complementary source of discriminative information in applications such as 2D object classification and social network analysis. We evaluate the performance of three different representations of topological features - persistence diagrams, persistence images, and persistence landscapes - for autism classification using neural networks, support vector machines and random forests. We also propose a hybrid approach of augmenting topological features with functional correlations, which typically outperforms the models that use functional correlations alone. With this approach, even with a simple 3-layer neural network, we are able to achieve a classification accuracy of 69.2% on the ABIDE data set. However, our experiments also show that the improvement due to topological features is not always statistically significant. Therefore, we offer a cautionary tale to the practitioners regarding the limited discriminative power of topological features derived from fMRI data for the classification of autism.

摘要

利用静息态功能连接网络识别自闭症个体可为自闭症谱系障碍(ASD)提供一种客观的诊断方法。目前使用深度学习的最先进机器学习模型在自闭症大脑成像数据交换(ABIDE)数据集上的分类准确率为70.2%。在本文中,我们探讨拓扑特征在ASD与典型发育对照受试者分类中的效用。这些拓扑特征已被证明在二维物体分类和社交网络分析等应用中提供了一种补充性的判别信息来源。我们使用神经网络、支持向量机和随机森林评估了三种不同拓扑特征表示形式——持久图、持久图像和持久景观——在自闭症分类中的性能。我们还提出了一种将拓扑特征与功能相关性相结合的混合方法,该方法通常优于仅使用功能相关性的模型。通过这种方法,即使使用简单的三层神经网络,我们在ABIDE数据集上也能达到69.2%的分类准确率。然而,我们的实验也表明,由于拓扑特征带来的改进并不总是具有统计学意义。因此,我们向从业者讲述一个警示故事,即功能磁共振成像(fMRI)数据导出的拓扑特征在自闭症分类中的判别能力有限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91eb/7390646/396adc8ff6f6/nihms-1609903-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验