Suppr超能文献

磁集成肿瘤-血管界面系统模拟促血管生成内皮失调的芯片药物测试

Magnetically Integrated Tumor-Vascular Interface System to Mimic Pro-angiogenic Endothelial Dysregulations for On-Chip Drug Testing.

机构信息

Bioinspired Microengineering (BIOME) Laboratory, Department of Chemical, Biological and Bio Engineering, North Carolina A&T State University, Greensboro, North Carolina 27265, United States.

Joint Department of Biomedical Engineering, UNC Chapel Hill─NC State University, Chapel Hill, North Carolina 27599, United States.

出版信息

ACS Appl Mater Interfaces. 2024 Sep 11;16(36):47075-47088. doi: 10.1021/acsami.4c01766. Epub 2024 Aug 28.

Abstract

The tumor-vascular interface is a critical component of the tumor microenvironment that regulates all of the dynamic interactions between a growing tumor and the endothelial lining of the surrounding vasculature. In this paper, we report the design and development of a custom-engineered tumor-vascular interface system for investigating the early stage tumor-mediated pro-angiogenic dysfunctional behavior of the endothelium. Using representative endothelial cells and triple negative breast cancer cell lines, we established a biomimetic interface between a three-dimensional tumor tissue across a mature, functional endothelial barrier using a magnetically hybrid-integrated tumor-vascular interface system, wherein vasculature-like features containing a monolayer of endothelial cell culture on porous microfluidic channel surfaces were magnetically attached to tumor spheroids generated on a composite polymer-hydrogel microwell plate and embedded in a collagen matrix. Tumor-mediated endothelial microdynamics were characterized by their hallmark behavior such as loss of endothelial adherens junctions, increased cell density, proliferation, and changes in cell spreading and corroborated with endothelial YAP/TAZ nuclear translocation. We further confirm the feasibility of drug-mediated reversal of this pro-angiogenic endothelial organization through two different signaling mechanisms, namely, inhibition of the vascular endothelial growth factor pathway and the Notch signaling pathway, thereby demonstrating the utility of the tumor-vascular interface platform for rapid, early stage prediction of antiangiogenic drug efficacy. Overall, our work emphasizes the importance of our strategic engineering approach for identifying some unique, physiologically relevant aspects of the tumor-vascular interface, which are otherwise difficult to implement using standard in vitro approaches.

摘要

肿瘤-血管界面是肿瘤微环境的一个关键组成部分,调节着不断增长的肿瘤与周围血管内皮衬里之间的所有动态相互作用。在本文中,我们报告了一种定制的肿瘤-血管界面系统的设计和开发,用于研究早期肿瘤介导的内皮功能失调的促血管生成行为。使用代表性的内皮细胞和三阴性乳腺癌细胞系,我们使用磁混合集成的肿瘤-血管界面系统在成熟的功能性内皮屏障上建立了三维肿瘤组织与多孔微流控通道表面单层内皮细胞培养物之间的仿生界面,其中类似于血管的特征是将内皮细胞培养物的单层磁性附着在肿瘤球体上生成于复合聚合物水凝胶微井板上并嵌入胶原基质中。肿瘤介导的内皮微动力学的特征是其标志性行为,如内皮细胞黏附连接的丧失、细胞密度增加、增殖以及细胞扩散的变化,并与内皮 YAP/TAZ 核易位相吻合。我们进一步通过两种不同的信号机制证实了药物介导逆转这种促血管生成的内皮组织的可行性,即血管内皮生长因子途径和 Notch 信号途径的抑制,从而证明了肿瘤-血管界面平台在快速、早期预测抗血管生成药物疗效方面的实用性。总的来说,我们的工作强调了我们的战略工程方法的重要性,该方法用于识别肿瘤-血管界面的一些独特的、生理相关方面,否则使用标准的体外方法很难实现这些方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f97/11403600/2166712e1b64/am4c01766_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验