Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.
Department of Industrial Engineering, University of Florence, Florence, Tuscany 50139, Italy.
Sci Robot. 2024 Aug 28;9(93):eadk8019. doi: 10.1126/scirobotics.adk8019.
Living tissues are still far from being used as practical components in biohybrid robots because of limitations in life span, sensitivity to environmental factors, and stringent culture procedures. Here, we introduce fungal mycelia as an easy-to-use and robust living component in biohybrid robots. We constructed two biohybrid robots that use the electrophysiological activity of living mycelia to control their artificial actuators. The mycelia sense their environment and issue action potential-like spiking voltages as control signals to the motors and valves of the robots that we designed and built. The paper highlights two key innovations: first, a vibration- and electromagnetic interference-shielded mycelium electrical interface that allows for stable, long-term electrophysiological bioelectric recordings during untethered, mobile operation; second, a control architecture for robots inspired by neural central pattern generators, incorporating rhythmic patterns of positive and negative spikes from the living mycelia. We used these signals to control a walking soft robot as well as a wheeled hard one. We also demonstrated the use of mycelia to respond to environmental cues by using ultraviolet light stimulation to augment the robots' gaits.
由于寿命、对环境因素的敏感性和严格的培养程序等限制,活体组织在生物混合机器人中仍然远未被用作实用部件。在这里,我们引入真菌菌丝作为生物混合机器人中易于使用且坚固的活体部件。我们构建了两个使用活体菌丝的电生理活性来控制其人工执行器的生物混合机器人。菌丝感知环境,并发出类似于动作电位的尖峰电压作为控制信号,控制我们设计和制造的机器人的电机和阀门。本文强调了两个关键创新:首先,一种具有抗振动和电磁干扰功能的菌丝电接口,允许在无绳、移动操作期间进行稳定、长期的电生理生物电记录;其次,一种受神经中枢模式发生器启发的机器人控制架构,其中包含来自活体菌丝的正负尖峰的节奏模式。我们使用这些信号来控制一个行走的软体机器人和一个轮式的硬体机器人。我们还展示了使用菌丝来响应环境提示的方法,即使用紫外线刺激来增强机器人的步态。