Wang Xingchen, Lv Bo, Tang Fengzhen, Wang Yukai, Liu Bin, Liu Lianqing
State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Nanta Street 114, Shengyang 110016, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Biomimetics (Basel). 2025 Jun 3;10(6):359. doi: 10.3390/biomimetics10060359.
The integration of in vitro biological neural networks (BNNs) with robotic systems to explore their information processing and adaptive learning in practical tasks has gained significant attention in the fields of neuroscience and robotics. However, existing BNN-based robotic systems cannot perceive the visual environment due to the inefficiency of sensory information encoding methods. In this study, we propose a biomimetic visual information spatiotemporal encoding method based on improved delayed phase encoding. This method transforms high-dimensional images into a series of pulse sequences through convolution, temporal delay, alignment, and compression for BNN stimuli. We conduct three stages of unsupervised training on in vitro BNNs using high-density microelectrode arrays (HD-MEAs) to validate the potential of the proposed encoding method for image recognition tasks. The neural activity is decoded via a logistic regression model. The experimental results show that the firing patterns of BNNs with different spatiotemporal stimuli are highly separable in the feature space. After the third training stage, the image recognition accuracy reaches 80.33% ± 7.94%, which is 13.64% higher than that of the first training stage. Meanwhile, the BNNs exhibit significant increases in the connection number, connection strength, and inter-module participation coefficient after unsupervised training. These results demonstrate that the proposed method significantly enhances the functional connectivity and cross-module information exchange in BNNs.
将体外生物神经网络(BNNs)与机器人系统集成,以探索它们在实际任务中的信息处理和自适应学习能力,这在神经科学和机器人技术领域已引起了广泛关注。然而,由于感官信息编码方法效率低下,现有的基于BNN的机器人系统无法感知视觉环境。在本研究中,我们提出了一种基于改进延迟相位编码的仿生视觉信息时空编码方法。该方法通过卷积、时间延迟、对齐和压缩,将高维图像转换为一系列脉冲序列,作为BNN的刺激信号。我们使用高密度微电极阵列(HD-MEAs)对体外BNN进行了三个阶段的无监督训练,以验证所提出的编码方法在图像识别任务中的潜力。通过逻辑回归模型对神经活动进行解码。实验结果表明,具有不同时空刺激的BNN的放电模式在特征空间中具有高度可分离性。在第三个训练阶段之后,图像识别准确率达到80.33%±7.94%,比第一个训练阶段高出13.64%。同时,无监督训练后,BNN的连接数、连接强度和模块间参与系数显著增加。这些结果表明,所提出的方法显著增强了BNN中的功能连通性和跨模块信息交换。