Suppr超能文献

一种利用电子健康记录预测曾住院患者阿片类药物滥用的神经网络方法。

A neural network approach to predict opioid misuse among previously hospitalized patients using electronic health records.

机构信息

Data Analytics Lab, The University of Texas at Tyler, Tyler, Texas, United States of America.

Pharmaceutical Sciences Department, The University of Texas at Tyler, Tyler, Texas, United States of America.

出版信息

PLoS One. 2024 Aug 28;19(8):e0309424. doi: 10.1371/journal.pone.0309424. eCollection 2024.

Abstract

Can Electronic Health Records (EHR) predict opioid misuse in general patient populations? This research trained three backpropagation neural networks to explore EHR predictors using existing patient data. Model 1 used patient diagnosis codes and was 75.5% accurate. Model 2 used patient prescriptions and was 64.9% accurate. Model 3 used both patient diagnosis codes and patient prescriptions and was 74.5% accurate. This suggests patient diagnosis codes are best able to predict opioid misuse. Opioid misusers have higher rates of drug abuse/mental health disorders than the general population, which could explain the performance of diagnosis predictors. In additional testing, Model 1 misclassified only 1.9% of negative cases (non-abusers), demonstrating a low type II error rate. This suggests further clinical implementation is viable. We hope to motivate future research to explore additional methods for universal opioid misuse screening.

摘要

电子健康记录 (EHR) 能否预测一般患者人群中的阿片类药物滥用?本研究使用现有患者数据训练了三个反向传播神经网络来探索 EHR 预测因素。模型 1 使用患者诊断代码,准确率为 75.5%。模型 2 使用患者处方,准确率为 64.9%。模型 3 使用患者诊断代码和患者处方,准确率为 74.5%。这表明患者诊断代码最能预测阿片类药物滥用。阿片类药物滥用者的药物滥用/精神健康障碍率高于一般人群,这可以解释诊断预测因素的表现。在额外的测试中,模型 1 仅错误分类了 1.9%的阴性病例(非滥用者),表明 II 型错误率较低。这表明进一步的临床实施是可行的。我们希望激励未来的研究探索通用阿片类药物滥用筛查的其他方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd02/11356447/07bcb5cc252b/pone.0309424.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验