Suppr超能文献

基于污水监测和新型机器学习算法估计 SARS-CoV-2 和流感 A 病毒的流行轨迹。

Estimating epidemic trajectories of SARS-CoV-2 and influenza A virus based on wastewater monitoring and a novel machine learning algorithm.

机构信息

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, China.

CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Shanghai, China.

出版信息

Sci Total Environ. 2024 Nov 15;951:175830. doi: 10.1016/j.scitotenv.2024.175830. Epub 2024 Aug 27.

Abstract

The COVID-19 pandemic has altered the circulation of non-SARS-CoV-2 respiratory viruses. In this study, we carried out wastewater surveillance of SARS-CoV-2 and influenza A virus (IAV) in three key port cities in China through real-time quantitative PCR (RT-qPCR). Next, a novel machine learning algorithm (MLA) based on Gaussian model and random forest model was used to predict the epidemic trajectories of SARS-CoV-2 and IAV. The results showed that from February 2023 to January 2024, three port cities experienced two waves of SARS-CoV-2 infection, which peaked in late-May and late-August 2023, respectively. Two waves of IAV were observed in the spring and winter of 2023, respectively with considerable variations in terms of onset/offset date and duration. Furthermore, we employed MLA to extract the key features of epidemic trajectories of SARS-CoV-2 and IAV from February 3rd, to October 15th, 2023, and thereby predicted the epidemic trends of SARS-CoV-2 and IAV from October 16th, 2023 to April 22nd, 2024, which showed high consistency with the observed values. These collective findings offer an important understanding of SARS-CoV-2 and IAV epidemics, suggesting that wastewater surveillance together with MLA emerges as a powerful tool for risk assessment of respiratory viral diseases and improving public health preparedness.

摘要

新冠疫情改变了非 SARS-CoV-2 呼吸道病毒的传播。在这项研究中,我们通过实时定量 PCR(RT-qPCR)对中国三个主要港口城市的 SARS-CoV-2 和流感 A 病毒(IAV)进行了污水监测。接下来,我们使用基于高斯模型和随机森林模型的新型机器学习算法(MLA)来预测 SARS-CoV-2 和 IAV 的疫情轨迹。结果表明,从 2023 年 2 月至 2024 年 1 月,三个港口城市经历了两波 SARS-CoV-2 感染,分别在 2023 年 5 月底和 8 月底达到高峰。2023 年春季和冬季分别观察到两波 IAV,其发病/结束日期和持续时间存在较大差异。此外,我们利用 MLA 从 2023 年 2 月 3 日到 10 月 15 日提取 SARS-CoV-2 和 IAV 疫情轨迹的关键特征,并预测了 2023 年 10 月 16 日至 2024 年 4 月 22 日期间 SARS-CoV-2 和 IAV 的疫情趋势,与观察值高度一致。这些综合研究结果提供了对 SARS-CoV-2 和 IAV 疫情的重要认识,表明污水监测与 MLA 一起成为评估呼吸道病毒疾病风险和加强公共卫生准备的有力工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验