Chaqroun Ahlam, El Soufi Ghina, Gerber Zuzana, Loutreul Julie, Cluzel Nicolas, Delafoy Damien, Sandron Florian, Di Jorio Léo, Raffestin Stéphanie, Maréchal Vincent, Gantzer Christophe, Olaso Robert, Deleuze Jean-François, Rohr Olivier, Boudaud Nicolas, Wallet Clémentine, Bertrand Isabelle
Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France; OBEPINE consortium, Paris, France.
Université de Strasbourg, UPR CNRS 9002 ARN, F-67300 Schiltigheim, France; Université de Strasbourg, IUT Louis Pasteur, F-67300 Schiltigheim, France; OBEPINE consortium, Paris, France.
Sci Total Environ. 2024 Nov 20;952:175823. doi: 10.1016/j.scitotenv.2024.175823. Epub 2024 Aug 26.
Monitoring the presence of RNA from emerging pathogenic viruses, such as SARS-CoV-2, in wastewater (WW) samples requires suitable methods to ensure an effective response. Genome sequencing of WW is one of the crucial methods, but it requires high-quality RNA in sufficient quantities, especially for monitoring emerging variants. Consequently, methods for viral concentration and RNA extraction from WW samples have to be optimized before sequencing. The purpose of this study was to achieve high coverage (≥ 90 %) and sequencing depth (at least ≥200×) even for low initial RNA concentrations (< 10 genome copies (GC)/L) in WW. A further objective was to determine the range of SARS-CoV-2 RNA concentrations that allow high-quality sequencing, and the optimal sample volume for analysis. Ultrafiltration (UF) methods were used to concentrate viral particles from large influent samples (up to 500 mL). An RNA extraction protocol using silica beads, neutral phenol-chloroform treatment, and a PCR inhibitor removal kit was chosen for its effectiveness in extracting RNA and eliminating PCR inhibitors, as well as its adaptability for use with large influent samples. Recovery rates ranged from 24 % to 63 % (N = 17) for SARS-CoV-2 naturally present in WW samples. 200 mL WW samples can be enough for UF concentration, as they showed high quality sequencing analyses with between 5 × 10 GC/L and 6 × 10 GC/L. Below 6 × 10 GC/L, high-quality sequencing was also achieved for ∼40 % of the samples using 500 mL of WW. Sequencing analysis for variant detection was performed on 200 mL WW samples with coverage of >95 % and sequencing depth of >1000×. Analyses revealed the predominance of variant EG.5, known as Eris (66 %-100 %). The use of UF methods in combination with a suitable RNA extraction protocol appear promising for sequencing enveloped viruses in WW in a context of viral emergence.
监测废水中新兴致病病毒(如严重急性呼吸综合征冠状病毒2,SARS-CoV-2)的RNA存在情况需要合适的方法来确保有效应对。废水基因组测序是关键方法之一,但它需要足够数量的高质量RNA,特别是用于监测新兴变异株。因此,在测序之前必须优化从废水样本中浓缩病毒和提取RNA的方法。本研究的目的是即使对于废水中低初始RNA浓度(<10个基因组拷贝(GC)/升),也能实现高覆盖率(≥90%)和测序深度(至少≥200×)。另一个目标是确定能够进行高质量测序的SARS-CoV-2 RNA浓度范围以及最佳分析样本量。采用超滤(UF)方法从大量进水样本(高达500毫升)中浓缩病毒颗粒。选择了一种使用硅胶珠、中性酚-氯仿处理和PCR抑制剂去除试剂盒的RNA提取方案,因为它在提取RNA和消除PCR抑制剂方面有效,并且适用于大量进水样本。废水中天然存在的SARS-CoV-2的回收率在24%至63%之间(N = 17)。200毫升废水样本足以进行超滤浓缩,因为它们在5×10 GC/升和6×10 GC/升之间显示出高质量的测序分析。低于6×10 GC/升时,使用500毫升废水对约40%的样本也实现了高质量测序。对200毫升废水样本进行了变异株检测的测序分析,覆盖率>95%,测序深度>100×。分析显示变异株EG.在病毒出现的背景下,超滤方法与合适的RNA提取方案结合使用,对于废水中包膜病毒的测序似乎很有前景。 5占主导地位,即Eris(66%-100%)。