Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France.
Charles University, First Faculty of Medicine, Institute of Anatomy, Prague, Czech Republic.
Nat Cardiovasc Res. 2024 Sep;3(9):1140-1157. doi: 10.1038/s44161-024-00530-z. Epub 2024 Aug 28.
Unlike adult mammals, newborn mice can regenerate a functional heart after myocardial infarction; however, the precise origin of the newly formed cardiomyocytes and whether the distal part of the conduction system (the Purkinje fiber (PF) network) is properly formed in regenerated hearts remains unclear. PFs, as well as subendocardial contractile cardiomyocytes, are derived from trabeculae, transient myocardial ridges on the inner ventricular surface. Here, using connexin 40-driven genetic tracing, we uncover a substantial participation of the trabecular lineage in myocardial regeneration through dedifferentiation and proliferation. Concomitantly, regeneration disrupted PF network maturation, resulting in permanent PF hyperplasia and impaired ventricular conduction. Proliferation assays, genetic impairment of PF recruitment, lineage tracing and clonal analysis revealed that PF network hyperplasia results from excessive recruitment of PFs due to increased trabecular fate plasticity. These data indicate that PF network hyperplasia is a consequence of trabeculae participation in myocardial regeneration.
与成年哺乳动物不同,新生小鼠在心肌梗死后可以再生出具有功能的心脏;然而,新形成的心肌细胞的确切来源,以及再生心脏中远端传导系统(浦肯野纤维 (PF) 网络)是否正常形成仍不清楚。PF 以及心内膜下收缩性心肌细胞都来源于小梁,即心室内表面的短暂心肌嵴。在这里,我们使用连接蛋白 40 驱动的遗传追踪,发现小梁谱系通过去分化和增殖大量参与心肌再生。同时,再生破坏了 PF 网络的成熟,导致 PF 永久性增生和心室传导受损。增殖分析、PF 募集的遗传损伤、谱系追踪和克隆分析表明,PF 网络增生是由于小梁命运可塑性增加导致 PF 过度募集所致。这些数据表明,PF 网络增生是小梁参与心肌再生的结果。