Department of Preventive Healthcare, Shihezi University, Shihezi, 832000, China.
Department of Radiology, The First People's Hospital of Kashi (Kashgar) Prefecture, Kashgar, 844000, China.
BMC Infect Dis. 2024 Aug 28;24(1):875. doi: 10.1186/s12879-024-09771-6.
Pulmonary tuberculosis (PTB) is a prevalent chronic disease associated with a significant economic burden on patients. Using machine learning to predict hospitalization costs can allocate medical resources effectively and optimize the cost structure rationally, so as to control the hospitalization costs of patients better.
This research analyzed data (2020-2022) from a Kashgar pulmonary hospital's information system, involving 9570 eligible PTB patients. SPSS 26.0 was used for multiple regression analysis, while Python 3.7 was used for random forest regression (RFR) and MLP. The training set included data from 2020 and 2021, while the test set included data from 2022. The models predicted seven various costs related to PTB patients, including diagnostic cost, medical service cost, material cost, treatment cost, drug cost, other cost, and total hospitalization cost. The model's predictive performance was evaluated using R-square (R), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) metrics.
Among the 9570 PTB patients included in the study, the median and quartile of total hospitalization cost were 13,150.45 (9891.34, 19,648.48) yuan. Nine factors, including age, marital status, admission condition, length of hospital stay, initial treatment, presence of other diseases, transfer, drug resistance, and admission department, significantly influenced hospitalization costs for PTB patients. Overall, MLP demonstrated superior performance in most cost predictions, outperforming RFR and multiple regression; The performance of RFR is between MLP and multiple regression; The predictive performance of multiple regression is the lowest, but it shows the best results for Other costs.
The MLP can effectively leverage patient information and accurately predict various hospitalization costs, achieving a rationalized structure of hospitalization costs by adjusting higher-cost inpatient items and balancing different cost categories. The insights of this predictive model also hold relevance for research in other medical conditions.
肺结核(PTB)是一种常见的慢性疾病,给患者带来了巨大的经济负担。使用机器学习预测住院费用,可以有效地分配医疗资源,合理优化成本结构,从而更好地控制患者的住院费用。
本研究分析了喀什地区肺科医院信息系统(2020-2022 年)中的数据,共纳入 9570 例符合条件的肺结核患者。采用 SPSS26.0 进行多元回归分析,采用 Python3.7 进行随机森林回归(RFR)和 MLP。训练集包括 2020 年和 2021 年的数据,测试集包括 2022 年的数据。模型预测了与肺结核患者相关的七种不同费用,包括诊断费用、医疗服务费用、材料费用、治疗费用、药物费用、其他费用和总住院费用。使用 R 平方(R)、均方根误差(RMSE)和平均绝对误差(MAE)指标评估模型的预测性能。
在纳入研究的 9570 例肺结核患者中,总住院费用的中位数和四分位数为 13150.45 元(9891.34 元,19648.48 元)。年龄、婚姻状况、入院情况、住院天数、初始治疗、合并其他疾病、转归、耐药情况和入院科室等 9 个因素对肺结核患者的住院费用有显著影响。总体而言,MLP 在大多数费用预测中表现出色,优于 RFR 和多元回归;RFR 的性能介于 MLP 和多元回归之间;多元回归的预测性能最低,但在其他费用方面表现最好。
MLP 可以有效地利用患者信息,准确预测各种住院费用,通过调整高成本住院项目和平衡不同成本类别,实现住院费用结构的合理化。该预测模型的见解对于其他医疗条件的研究也具有相关性。