Suppr超能文献

利用机器学习中的回归技术估算和预测住院和医疗费用。

Estimation and Prediction of Hospitalization and Medical Care Costs Using Regression in Machine Learning.

机构信息

Department of Computer Science, College of Science and Arts in Gurayat, Jouf University, Sakakah, Saudi Arabia.

Information System Department, Faculty of Computers and Information, Assiut University, Assiut, Egypt.

出版信息

J Healthc Eng. 2022 Mar 2;2022:7969220. doi: 10.1155/2022/7969220. eCollection 2022.

Abstract

Medical costs are one of the most common recurring expenses in a person's life. Based on different research studies, BMI, ageing, smoking, and other factors are all related to greater personal medical care costs. The estimates of the expenditures of health care related to obesity are needed to help create cost-effective obesity prevention strategies. Obesity prevention at a young age is a top concern in global health, clinical practice, and public health. To avoid these restrictions, genetic variants are employed as instrumental variables in this research. Using statistics from public huge datasets, the impact of body mass index (BMI) on overall healthcare expenses is predicted. A multiview learning architecture can be used to leverage BMI information in records, including diagnostic texts, diagnostic IDs, and patient traits. A hierarchy perception structure was suggested to choose significant words, health checks, and diagnoses for training phase informative data representations, because various words, diagnoses, and previous health care have varying significance for expense calculation. In this system model, linear regression analysis, naive Bayes classifier, and random forest algorithms were compared using a business analytic method that applied statistical and machine-learning approaches. According to the results of our forecasting method, linear regression has the maximum accuracy of 97.89 percent in forecasting overall healthcare costs. In terms of financial statistics, our methodology provides a predictive method.

摘要

医疗费用是一个人一生中最常见的经常性支出之一。根据不同的研究,BMI、年龄、吸烟和其他因素都与个人医疗费用的增加有关。需要估计与肥胖相关的医疗保健支出,以帮助制定具有成本效益的肥胖预防策略。肥胖预防是全球健康、临床实践和公共卫生的首要关注点。为了避免这些限制,本研究将遗传变异用作工具变量。利用公共大型数据集的统计数据,预测了体重指数(BMI)对整体医疗费用的影响。可以使用多视图学习架构来利用记录中的 BMI 信息,包括诊断文本、诊断 ID 和患者特征。建议使用层次感知结构来选择重要的单词、健康检查和诊断,以便为训练阶段的信息数据表示提供信息,因为不同的单词、诊断和以前的医疗保健对费用计算的重要性不同。在这个系统模型中,使用商业分析方法比较了线性回归分析、朴素贝叶斯分类器和随机森林算法,该方法应用了统计和机器学习方法。根据我们的预测方法的结果,线性回归在预测整体医疗保健费用方面的准确率最高,达到 97.89%。在财务统计方面,我们的方法提供了一种预测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f69b/8906954/2f8f4a5ef43c/JHE2022-7969220.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验