Suppr超能文献

一种新型生物活性肽计算机预测工作流程:对副产物的探索。

A Novel Workflow for In Silico Prediction of Bioactive Peptides: An Exploration of By-Products.

机构信息

Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.

Centro di Eccellenza su Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy.

出版信息

Biomolecules. 2024 Jul 31;14(8):930. doi: 10.3390/biom14080930.

Abstract

Resource-intensive processes currently hamper the discovery of bioactive peptides (BAPs) from food by-products. To streamline this process, in silico approaches present a promising alternative. This study presents a novel computational workflow to predict peptide release, bioactivity, and bioavailability, significantly accelerating BAP discovery. The computational flowchart has been designed to identify and optimize critical enzymes involved in protein hydrolysis but also incorporates multi-enzyme screening. This feature is crucial for identifying the most effective enzyme combinations that yield the highest abundance of BAPs across different bioactive classes (anticancer, antidiabetic, antihypertensive, anti-inflammatory, and antimicrobial). Our process can be modulated to extract diverse BAP types efficiently from the same source. Here, we show the potentiality of our method for the identification of diverse types of BAPs from by-products generated from , the widely cultivated tomato plant, whose industrial processing generates a huge amount of waste, especially tomato peel. In particular, we optimized tomato by-products for bioactive peptide production by selecting cultivars like Line27859 and integrating large-scale gene expression. By integrating these advanced methods, we can maximize the value of by-products, contributing to a more circular and eco-friendly production process while advancing the development of valuable bioactive compounds.

摘要

资源密集型工艺目前阻碍了从食品副产物中发现生物活性肽(BAP)。为了简化这一过程,计算方法提供了一种有前途的替代方法。本研究提出了一种新的计算工作流程,用于预测肽的释放、生物活性和生物利用度,从而显著加速 BAP 的发现。该计算流程图旨在识别和优化参与蛋白质水解的关键酶,但也纳入了多酶筛选。这一特性对于确定最有效的酶组合至关重要,这些酶组合能够在不同的生物活性类别(抗癌、抗糖尿病、抗高血压、抗炎和抗微生物)中产生最高丰度的 BAP。我们的流程可以进行调整,以便从同一来源高效提取不同类型的 BAP。在这里,我们展示了我们的方法从广泛种植的番茄植物产生的副产物中识别不同类型 BAP 的潜力,其工业加工会产生大量废物,尤其是番茄皮。特别是,我们通过选择像 Line27859 这样的品种和整合大规模基因表达,优化了用于生物活性肽生产的番茄副产物。通过整合这些先进的方法,我们可以最大限度地提高副产物的价值,为更循环和环保的生产过程做出贡献,同时推进有价值的生物活性化合物的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8118/11352670/0c90b85d9370/biomolecules-14-00930-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验