Morena Francesco, Cencini Chiara, Emiliani Carla, Martino Sabata
Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Italy.
Centro di Eccellenza su Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Italy.
Comput Struct Biotechnol J. 2025 Mar 1;27:896-911. doi: 10.1016/j.csbj.2025.02.032. eCollection 2025.
In this study, we proposed a novel comprehensive computational framework that combines deep generative modeling with in silico peptide optimization to expedite the discovery of bioactive compounds. Our methodology utilizes RFdiffusion, a variation of the RoseTTAFold model for protein design, in tandem with ProteinMPNN, a deep neural network for protein sequence optimization, to provide short candidate peptides for targeted binding interactions. As a proof-of-concept, we focused on Keap1 (Kelch-like ECH-associated protein 1), a key regulator in the Keap1/Nrf2 antioxidant pathway. To achieve this, we designed peptide sequences that would interact with specific binding subpockets within its Kelch domain. We integrated machine learning models to forecast essential peptide properties, including toxicity, stability, and allergenicity, thus enhancing the selection of prospective candidates. Our in silico screening identified eight top candidates that exhibited strong binding affinity and good biophysical characteristics. The candidates underwent additional validation via comprehensive molecular dynamics simulations, which confirmed their strong binding contacts and structural stability over time. This integrated framework offers a scalable and adaptable platform for the rapid design of therapeutic peptides, merging breakthrough computational techniques with focused case studies. Furthermore, our modular methodology facilitates its straightforward adaptation to alternative protein targets, hence considerably enhancing its potential influence in drug development and discovery.
在本研究中,我们提出了一种新颖的综合计算框架,该框架将深度生成模型与计算机辅助肽优化相结合,以加速生物活性化合物的发现。我们的方法利用RFdiffusion(一种用于蛋白质设计的RoseTTAFold模型变体)与ProteinMPNN(一种用于蛋白质序列优化的深度神经网络)协同工作,以提供用于靶向结合相互作用的短候选肽。作为概念验证,我们聚焦于Keap1( Kelch样ECH相关蛋白1),它是Keap1/Nrf2抗氧化途径中的关键调节因子。为此,我们设计了能与Keap1 Kelch结构域内特定结合亚口袋相互作用的肽序列。我们整合了机器学习模型来预测肽的关键特性,包括毒性、稳定性和致敏性,从而改进了对潜在候选物的筛选。我们的计算机模拟筛选确定了八个表现出强结合亲和力和良好生物物理特性的顶级候选物。这些候选物通过全面的分子动力学模拟进行了进一步验证,证实了它们随着时间推移具有强结合接触和结构稳定性。这个综合框架为治疗性肽的快速设计提供了一个可扩展且适应性强的平台,将突破性的计算技术与针对性的案例研究相结合。此外,我们的模块化方法便于直接应用于其他蛋白质靶点,从而显著增强其在药物开发和发现中的潜在影响力。