Suppr超能文献

从完全校准到零训练的代码调制视觉诱发电位脑机接口。

From full calibration to zero training for a code-modulated visual evoked potentials for brain-computer interface.

机构信息

MindAffect, Nijmegen, The Netherlands.

Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.

出版信息

J Neural Eng. 2021 Apr 6;18(5). doi: 10.1088/1741-2552/abecef.

Abstract

Typically, a brain-computer interface (BCI) is calibrated using user- and session-specific data because of the individual idiosyncrasies and the non-stationary signal properties of the electroencephalogram (EEG). Therefore, it is normal for BCIs to undergo a time-consuming passive training stage that prevents users from directly operating them. In this study, we systematically reduce the training data set in a stepwise fashion, to ultimately arrive at a calibration-free method for a code-modulated visually evoked potential (cVEP)-based BCI to fully eliminate the tedious training stage.In an extensive offline analysis, we compare our sophisticated encoding model with a traditional event-related potential (ERP) technique. We calibrate the encoding model in a standard way, with data limited to a single class while generalizing to all others and without any data. In addition, we investigate the feasibility of the zero-training cVEP BCI in an online setting.By adopting the encoding model, the training data can be reduced substantially, while maintaining both the classification performance as well as the explained variance of the ERP method. Moreover, with data from only one class or even no data at all, it still shows excellent performance. In addition, the zero-training cVEP BCI achieved high communication rates in an online spelling task, proving its feasibility for practical use.To date, this is the fastest zero-training cVEP BCI in the field, allowing high communication speeds without calibration while using only a few non-invasive water-based EEG electrodes. This allows us to skip the training stage altogether and spend all the valuable time on direct operation. This minimizes the session time and opens up new exciting directions for practical plug-and-play BCI. Fundamentally, these results validate that the adopted neural encoding model compresses data into event responses without the loss of explanatory power compared to using full ERPs as a template.

摘要

通常,由于个体差异和脑电图(EEG)的非平稳信号特性,脑机接口(BCI)需要使用用户和会话特定的数据进行校准。因此,BCI 通常需要经过一个耗时的被动训练阶段,使用户无法直接操作它们。在这项研究中,我们系统地逐步减少训练数据集,最终实现了一种无校准的基于编码调制视觉诱发电位(cVEP)的 BCI 方法,完全消除了繁琐的训练阶段。在广泛的离线分析中,我们将我们复杂的编码模型与传统的事件相关电位(ERP)技术进行了比较。我们以标准方式校准编码模型,将数据仅限于单个类别,同时推广到所有其他类别,并且没有任何数据。此外,我们还研究了无训练 cVEP BCI 在在线设置中的可行性。通过采用编码模型,可以大大减少训练数据,同时保持 ERP 方法的分类性能和解释方差。此外,即使只有一个类别的数据甚至没有数据,它仍然表现出出色的性能。此外,无训练 cVEP BCI 在在线拼写任务中实现了高通信率,证明了其在实际应用中的可行性。迄今为止,这是该领域最快的无训练 cVEP BCI,允许在不进行校准的情况下实现高通信速度,同时仅使用少数非侵入性水基 EEG 电极。这使我们可以完全跳过训练阶段,将所有宝贵的时间都花在直接操作上。这最大限度地减少了会话时间,并为实用的即插即用 BCI 开辟了新的令人兴奋的方向。从根本上讲,这些结果验证了所采用的神经编码模型在不损失解释能力的情况下将数据压缩为事件响应,与使用完整的 ERP 作为模板相比。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验