Manole Ionela, Butacu Alexandra-Irina, Bejan Raluca Nicoleta, Tiplica George-Sorin
2nd Department of Dermatology, Colentina Clinical Hospital, 020125 Bucharest, Romania.
2nd Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
Bioengineering (Basel). 2024 Aug 9;11(8):810. doi: 10.3390/bioengineering11080810.
: Despite recent advancements, medical technology has not yet reached its peak. Precision medicine is growing rapidly, thanks to machine learning breakthroughs powered by increased computational capabilities. This article explores a deep learning application for computer-aided diagnosis in dermatology. : Using a custom model based on EfficientNetB3 and deep learning, we propose an approach for skin lesion classification that offers superior results with smaller, cheaper, and faster inference times compared to other models. The skin images dataset used for this research includes 8222 files selected from the authors' collection and the ISIC 2019 archive, covering six dermatological conditions. : The model achieved 95.4% validation accuracy in four categories-melanoma, basal cell carcinoma, benign keratosis-like lesions, and melanocytic nevi-using an average of 1600 images per category. Adding two categories with fewer images (about 700 each)-squamous cell carcinoma and actinic keratoses-reduced the validation accuracy to 88.8%. The model maintained accuracy on new clinical test images taken under the same conditions as the training dataset. : The custom model demonstrated excellent performance on the diverse skin lesions dataset, with significant potential for further enhancements.
尽管最近取得了进展,但医学技术尚未达到顶峰。由于计算能力增强推动机器学习取得突破,精准医学正在迅速发展。本文探讨了深度学习在皮肤病学计算机辅助诊断中的应用。
使用基于EfficientNetB3和深度学习的定制模型,我们提出了一种皮肤病变分类方法,与其他模型相比,该方法在推理时间更短、成本更低且速度更快的情况下能提供更优的结果。本研究使用的皮肤图像数据集包括从作者的收藏和2019年国际皮肤影像协作组(ISIC)存档中选出的8222个文件,涵盖六种皮肤病。
该模型在黑色素瘤、基底细胞癌、良性角化病样病变和黑素细胞痣这四类病变中,平均每类使用1600张图像,验证准确率达到了95.4%。增加两类图像数量较少(每类约700张)的病变——鳞状细胞癌和光化性角化病——后,验证准确率降至88.8%。该模型在与训练数据集相同条件下拍摄的新临床测试图像上保持了准确率。
定制模型在多样的皮肤病变数据集上表现出色,具有进一步改进的巨大潜力。