Zhao Mingri, Wang Junling, Liu Miao, Xu Yaoyao, Huang Jiali, Zhang Yiti, He Jianfeng, Gu Ao, Liu Mujun, Liu Xionghao
MOE Key Lab. of Rare Pediatric Diseases, Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410000, China.
Department of Neurology, Xiangya Hospital, Central South University, Changsha 410000, China.
Biomedicines. 2024 Jul 30;12(8):1693. doi: 10.3390/biomedicines12081693.
Mutations in the C-terminal of KIF1A (Kinesin family member 1A) may lead to amyotrophic lateral sclerosis (ALS) through unknown mechanisms that are not yet understood. Using iPSC reprogramming technology and motor neuron differentiation techniques, we generated iPSCs from a healthy donor and two ALS patients with KIF1A mutations (R1457Q and P1688L) and differentiated them into spinal motor neurons (iPSC-MN) to investigate -related ALS pathology. Our in vitro iPSC-iMN model faithfully recapitulated specific aspects of the disease, such as neurite fragmentation. Through this model, we observed that these mutations led to KIF1A aggregation at the proximal axon of motor neurons and abnormal accumulation of its transport cargo, LAMP1, resulting in autophagy dysfunction and cell death. RNAseq analysis also indicated that the functions of the extracellular matrix, structure, and cell adhesion were significantly disturbed. Notably, using rapamycin during motor neuron differentiation can effectively prevent motor neuron death.
驱动蛋白家族成员1A(KIF1A)C端的突变可能通过尚未明确的机制导致肌萎缩侧索硬化症(ALS)。利用诱导多能干细胞(iPSC)重编程技术和运动神经元分化技术,我们从一名健康供体以及两名携带KIF1A突变(R1457Q和P1688L)的ALS患者身上获取了iPSC,并将其分化为脊髓运动神经元(iPSC-MN),以研究相关的ALS病理学。我们的体外iPSC-iMN模型忠实地再现了该疾病的特定方面,如神经突断裂。通过这个模型,我们观察到这些突变导致KIF1A在运动神经元近端轴突处聚集,以及其运输货物LAMP1的异常积累,从而导致自噬功能障碍和细胞死亡。RNA测序分析还表明,细胞外基质、结构和细胞粘附的功能受到了显著干扰。值得注意的是,在运动神经元分化过程中使用雷帕霉素可以有效防止运动神经元死亡。