Boesing Maria, Lüthi-Corridori Giorgia, Büttiker David, Hunziker Mireille, Jaun Fabienne, Vaskyte Ugne, Brändle Michael, Leuppi Jörg D
University Institute of Internal Medicine, Cantonal Hospital Baselland, 4410 Liestal, Switzerland.
Faculty of Medicine, University of Basel, 4056 Basel, Switzerland.
Biomedicines. 2024 Jul 31;12(8):1702. doi: 10.3390/biomedicines12081702.
Various scoring systems are available for COVID-19 risk stratification. This study aimed to validate their performance in predicting severe COVID-19 course in a large, heterogeneous Swiss cohort. Scores like the National Early Warning Score (NEWS), CURB-65, 4C mortality score (4C), Spanish Society of Infectious Diseases and Clinical Microbiology score (COVID-SEIMC), and COVID Intubation Risk Score (COVID-IRS) were assessed in patients hospitalized for COVID-19 in 2020 and 2021. Predictive accuracy for severe course (defined as all-cause in-hospital death or invasive mechanical ventilation (IMV)) was evaluated using receiver operating characteristic curves and the area under the curve (AUC). The new 'COVID-COMBI' score, combining parameters from the top two scores, was also validated. This study included 1,051 patients (mean age 65 years, 60% male), with 162 (15%) experiencing severe course. Among the established scores, 4C had the best accuracy for predicting severe course (AUC 0.76), followed by COVID-IRS (AUC 0.72). COVID-COMBI showed significantly higher accuracy than all established scores (AUC 0.79, = 0.001). For predicting in-hospital death, 4C performed best (AUC 0.83), and, for IMV, COVID-IRS performed best (AUC 0.78). The 4C and COVID-IRS scores were robust predictors of severe COVID-19 course, while the new COVID-COMBI showed significantly improved accuracy but requires further validation.
有多种评分系统可用于新冠病毒疾病(COVID-19)的风险分层。本研究旨在验证它们在预测瑞士一个大型异质性队列中COVID-19严重病程方面的表现。对2020年和2021年因COVID-19住院的患者评估了诸如国家早期预警评分(NEWS)、CURB-65、4C死亡评分(4C)、西班牙传染病和临床微生物学会评分(COVID-SEIMC)以及COVID插管风险评分(COVID-IRS)等评分。使用受试者工作特征曲线和曲线下面积(AUC)评估严重病程(定义为全因院内死亡或有创机械通气(IMV))的预测准确性。还对结合了前两个评分参数的新“COVID-COMBI”评分进行了验证。本研究纳入了1051名患者(平均年龄65岁,60%为男性),其中162名(15%)经历了严重病程。在既定评分中,4C在预测严重病程方面准确性最高(AUC为0.76),其次是COVID-IRS(AUC为0.72)。COVID-COMBI的准确性显著高于所有既定评分(AUC为0.79,P = 0.001)。对于预测院内死亡,4C表现最佳(AUC为0.83),对于IMV,COVID-IRS表现最佳(AUC为0.78)。4C和COVID-IRS评分是COVID-19严重病程的有力预测指标,而新的COVID-COMBI显示出显著提高的准确性,但需要进一步验证。