Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland.
English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland.
Int J Mol Sci. 2024 Aug 9;25(16):8708. doi: 10.3390/ijms25168708.
Gliomas account for 24% of all the primary brain and Central Nervous System (CNS) tumors. These tumors are diverse in cellular origin, genetic profile, and morphology but collectively have one of the most dismal prognoses of all cancers. Work is constantly underway to discover a new effective form of glioma therapy. Photodynamic therapy (PDT) may be one of them. It involves the local or systemic application of a photosensitive compound-a photosensitizer (PS)-which accumulates in the affected tissues. Photosensitizer molecules absorb light of the appropriate wavelength, initiating the activation processes leading to the formation of reactive oxygen species and the selective destruction of inappropriate cells. Research focusing on the effective use of PDT in glioma therapy is already underway with promising results. In our work, we provide detailed insights into the molecular changes in glioma after photodynamic therapy. We describe a number of molecules that may contribute to the resistance of glioma cells to PDT, such as the adenosine triphosphate (ATP)-binding cassette efflux transporter G2, glutathione, ferrochelatase, heme oxygenase, and hypoxia-inducible factor 1. We identify molecular targets that can be used to improve the photosensitizer delivery to glioma cells, such as the epithelial growth factor receptor, neuropilin-1, low-density lipoprotein receptor, and neuropeptide Y receptors. We note that PDT can increase the expression of some molecules that reduce the effectiveness of therapy, such as Vascular endothelial growth factor (VEGF), glutamate, and nitric oxide. However, the scientific literature lacks clear data on the effects of PDT on many of the molecules described, and the available reports are often contradictory. In our work, we highlight the gaps in this knowledge and point to directions for further research that may enhance the efficacy of PDT in the treatment of glioma.
神经胶质瘤占所有原发性脑和中枢神经系统 (CNS) 肿瘤的 24%。这些肿瘤在细胞起源、遗传特征和形态上各不相同,但总的来说,它们的预后是所有癌症中最糟糕的之一。目前正在不断努力寻找新的有效的神经胶质瘤治疗方法。光动力疗法 (PDT) 可能就是其中之一。它涉及局部或全身应用光敏化合物——一种光敏剂 (PS)——它在受影响的组织中积累。光敏剂分子吸收适当波长的光,启动激活过程,导致活性氧的形成和不合适细胞的选择性破坏。目前已经有研究聚焦于 PDT 在神经胶质瘤治疗中的有效应用,并取得了有前景的结果。在我们的工作中,我们深入了解了光动力治疗后神经胶质瘤的分子变化。我们描述了一些可能导致神经胶质瘤细胞对 PDT 产生耐药性的分子,如三磷酸腺苷 (ATP) 结合盒外排转运体 G2、谷胱甘肽、亚铁螯合酶、血红素加氧酶和缺氧诱导因子 1。我们确定了可以用于改善光敏剂向神经胶质瘤细胞传递的分子靶点,如表皮生长因子受体、神经纤毛蛋白 1、低密度脂蛋白受体和神经肽 Y 受体。我们注意到,PDT 可以增加一些降低治疗效果的分子的表达,如血管内皮生长因子 (VEGF)、谷氨酸和一氧化氮。然而,科学文献缺乏关于 PDT 对许多描述的分子的影响的明确数据,并且现有报告往往相互矛盾。在我们的工作中,我们强调了这方面知识的空白,并指出了进一步研究的方向,这可能会增强 PDT 在治疗神经胶质瘤中的疗效。