Suppr超能文献

基于 LC/MS 的非靶向脂质组学揭示了肌少症的脂质特征。

LC/MS-Based Untargeted Lipidomics Reveals Lipid Signatures of Sarcopenia.

机构信息

Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China.

出版信息

Int J Mol Sci. 2024 Aug 13;25(16):8793. doi: 10.3390/ijms25168793.

Abstract

Sarcopenia, a multifactorial systemic disorder, has attracted extensive attention, yet its pathogenesis is not fully understood, partly due to limited research on the relationship between lipid metabolism abnormalities and sarcopenia. Lipidomics offers the possibility to explore this relationship. Our research utilized LC/MS-based nontargeted lipidomics to investigate the lipid profile changes as-sociated with sarcopenia, aiming to enhance understanding of its underlying mechanisms. The study included 40 sarcopenia patients and 40 control subjects matched 1:1 by sex and age. Plasma lipids were detected and quantified, with differential lipids identified through univariate and mul-tivariate statistical analyses. A weighted correlation network analysis (WGCNA) and MetaboAna-lyst were used to identify lipid modules related to the clinical traits of sarcopenia patients and to conduct pathway analysis, respectively. A total of 34 lipid subclasses and 1446 lipid molecules were detected. Orthogonal partial least squares discriminant analysis (OPLS-DA) identified 80 differen-tial lipid molecules, including 38 phospholipids. Network analysis revealed that the brown module (encompassing phosphatidylglycerol (PG) lipids) and the yellow module (containing phosphati-dylcholine (PC), phosphatidylserine (PS), and sphingomyelin (SM) lipids) were closely associated with the clinical traits such as maximum grip strength and skeletal muscle mass (SMI). Pathway analysis highlighted the potential role of the glycerophospholipid metabolic pathway in lipid me-tabolism within the context of sarcopenia. These findings suggest a correlation between sarcopenia and lipid metabolism disturbances, providing valuable insights into the disease's underlying mechanisms and indicating potential avenues for further investigation.

摘要

肌肉减少症是一种多因素的系统性疾病,已经引起了广泛关注,但其发病机制尚未完全阐明,部分原因是脂质代谢异常与肌肉减少症之间的关系研究有限。脂质组学提供了探索这种关系的可能性。我们的研究利用基于 LC/MS 的非靶向脂质组学来研究与肌肉减少症相关的脂质谱变化,旨在增强对其潜在机制的理解。该研究纳入了 40 名肌肉减少症患者和 40 名性别和年龄匹配的对照者。检测和定量了血浆脂质,通过单变量和多变量统计分析鉴定差异脂质。使用加权相关网络分析(WGCNA)和 MetaboAnalyst 分别识别与肌肉减少症患者临床特征相关的脂质模块和进行途径分析。共检测到 34 个脂质亚类和 1446 个脂质分子。正交偏最小二乘判别分析(OPLS-DA)鉴定出 80 个差异脂质分子,其中包括 38 个磷脂。网络分析显示,棕色模块(包含磷脂酰甘油(PG)脂质)和黄色模块(包含磷脂酰胆碱(PC)、磷脂酰丝氨酸(PS)和鞘磷脂(SM)脂质)与最大握力和骨骼肌质量(SMI)等临床特征密切相关。途径分析突出了甘油磷脂代谢途径在肌肉减少症背景下脂质代谢中的潜在作用。这些发现表明肌肉减少症与脂质代谢紊乱之间存在相关性,为该疾病的潜在机制提供了有价值的见解,并表明进一步研究的潜在途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab7b/11354784/4167e13ec453/ijms-25-08793-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验