Suppr超能文献

基于机器学习的脓毒症出院状态风险预测

Machine Learning-Based Risk Prediction of Discharge Status for Sepsis.

作者信息

Cai Kaida, Lou Yuqing, Wang Zhengyan, Yang Xiaofang, Zhao Xin

机构信息

School of Public Health, Southeast University, Nanjing 210009, China.

School of Mathematics, Southeast University, Nanjing 210009, China.

出版信息

Entropy (Basel). 2024 Jul 25;26(8):625. doi: 10.3390/e26080625.

Abstract

As a severe inflammatory response syndrome, sepsis presents complex challenges in predicting patient outcomes due to its unclear pathogenesis and the unstable discharge status of affected individuals. In this study, we develop a machine learning-based method for predicting the discharge status of sepsis patients, aiming to improve treatment decisions. To enhance the robustness of our analysis against outliers, we incorporate robust statistical methods, specifically the minimum covariance determinant technique. We utilize the random forest imputation method to effectively manage and impute missing data. For feature selection, we employ Lasso penalized logistic regression, which efficiently identifies significant predictors and reduces model complexity, setting the stage for the application of more complex predictive methods. Our predictive analysis incorporates multiple machine learning methods, including random forest, support vector machine, and XGBoost. We compare the prediction performance of these methods with Lasso penalized logistic regression to identify the most effective approach. Each method's performance is rigorously evaluated through ten iterations of 10-fold cross-validation to ensure robust and reliable results. Our comparative analysis reveals that XGBoost surpasses the other models, demonstrating its exceptional capability to navigate the complexities of sepsis data effectively.

摘要

作为一种严重的炎症反应综合征,脓毒症因其发病机制不明以及受影响个体的出院状态不稳定,在预测患者预后方面面临着复杂的挑战。在本研究中,我们开发了一种基于机器学习的方法来预测脓毒症患者的出院状态,旨在改善治疗决策。为了增强我们的分析对异常值的鲁棒性,我们纳入了鲁棒统计方法,特别是最小协方差行列式技术。我们使用随机森林插补方法来有效管理和插补缺失数据。对于特征选择,我们采用套索惩罚逻辑回归,它能有效地识别显著预测因子并降低模型复杂性,为应用更复杂的预测方法奠定基础。我们的预测分析纳入了多种机器学习方法,包括随机森林、支持向量机和XGBoost。我们将这些方法的预测性能与套索惩罚逻辑回归进行比较,以确定最有效的方法。通过10折交叉验证的十次迭代对每种方法的性能进行严格评估,以确保结果的稳健性和可靠性。我们的比较分析表明,XGBoost优于其他模型,展示了其有效应对脓毒症数据复杂性的卓越能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b22/11354031/4ebd0134938d/entropy-26-00625-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验