Suppr超能文献

脓毒症患者死亡率预测的可解释机器学习模型的开发与验证

Development and validation of an interpretable machine learning for mortality prediction in patients with sepsis.

作者信息

He Bihua, Qiu Zheng

机构信息

Department of Neurology, Third People's Hospital of Hubei Province, Wuhan, China.

Department of Neurology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, China.

出版信息

Front Artif Intell. 2024 Jul 8;7:1348907. doi: 10.3389/frai.2024.1348907. eCollection 2024.

Abstract

INTRODUCTION

Sepsis is a leading cause of death. However, there is a lack of useful model to predict outcome in sepsis. Herein, the aim of this study was to develop an explainable machine learning (ML) model for predicting 28-day mortality in patients with sepsis based on Sepsis 3.0 criteria.

METHODS

We obtained the data from the Medical Information Mart for Intensive Care (MIMIC)-III database (version 1.4). The overall data was randomly assigned to the training and testing sets at a ratio of 3:1. Following the application of LASSO regression analysis to identify the modeling variables, we proceeded to develop models using Extreme Gradient Boost (XGBoost), Logistic Regression (LR), Support Vector Machine (SVM), and Random Forest (RF) techniques with 5-fold cross-validation. The optimal model was selected based on its area under the curve (AUC). Finally, the Shapley additive explanations (SHAP) method was used to interpret the optimal model.

RESULTS

A total of 5,834 septic adults were enrolled, the median age was 66 years (IQR, 54-78 years) and 2,342 (40.1%) were women. After feature selection, 14 variables were included for developing model in the training set. The XGBoost model (AUC: 0.806) showed superior performance with AUC, compared with RF (AUC: 0.794), LR (AUC: 0.782) and SVM model (AUC: 0.687). SHAP summary analysis for XGBoost model showed that urine output on day 1, age, blood urea nitrogen and body mass index were the top four contributors. SHAP dependence analysis demonstrated insightful nonlinear interactive associations between factors and outcome. SHAP force analysis provided three samples for model prediction.

CONCLUSION

In conclusion, our study successfully demonstrated the efficacy of ML models in predicting 28-day mortality in sepsis patients, while highlighting the potential of the SHAP method to enhance model transparency and aid in clinical decision-making.

摘要

引言

脓毒症是主要的死亡原因。然而,缺乏用于预测脓毒症预后的有效模型。在此,本研究的目的是基于脓毒症3.0标准开发一种可解释的机器学习(ML)模型,用于预测脓毒症患者的28天死亡率。

方法

我们从重症监护医学信息集市(MIMIC)-III数据库(版本1.4)获取数据。总体数据以3:1的比例随机分配到训练集和测试集。在应用套索回归分析以识别建模变量后,我们使用极端梯度提升(XGBoost)、逻辑回归(LR)、支持向量机(SVM)和随机森林(RF)技术并通过5折交叉验证来开发模型。基于曲线下面积(AUC)选择最优模型。最后,使用夏普利加性解释(SHAP)方法来解释最优模型。

结果

共纳入5834名脓毒症成年患者,中位年龄为66岁(四分位间距,54 - 78岁),2342名(40.1%)为女性。经过特征选择,训练集中有14个变量用于模型开发。与随机森林(AUC:0.794)、逻辑回归(AUC:0.782)和支持向量机模型(AUC:0.687)相比,XGBoost模型(AUC:0.806)在AUC方面表现更优。XGBoost模型的SHAP汇总分析表明第1天尿量、年龄、血尿素氮和体重指数是前四大影响因素。SHAP依赖性分析显示了因素与预后之间有深刻的非线性交互关联。SHAP力分析为模型预测提供了三个样本。

结论

总之,我们的研究成功证明了ML模型在预测脓毒症患者28天死亡率方面的有效性,同时突出了SHAP方法在提高模型透明度和辅助临床决策方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8de2/11262051/d39e27c2d610/frai-07-1348907-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验