使用贝叶斯模型拟合方法对动态和静态噪声中感知辨别随时间变化的漂移率模型的支持。

Support for the Time-Varying Drift Rate Model of Perceptual Discrimination in Dynamic and Static Noise Using Bayesian Model-Fitting Methodology.

作者信息

Deakin Jordan, Schofield Andrew, Heinke Dietmar

机构信息

School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

Faculty of Psychology and Human Movement Science, General Psychology, Universität Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany.

出版信息

Entropy (Basel). 2024 Jul 28;26(8):642. doi: 10.3390/e26080642.

Abstract

The drift-diffusion model (DDM) is a common approach to understanding human decision making. It considers decision making as accumulation of evidence about visual stimuli until sufficient evidence is reached to make a decision (decision boundary). Recently, Smith and colleagues proposed an extension of DDM, the time-varying DDM (TV-DDM). Here, the standard simplification that evidence accumulation operates on a fully formed representation of perceptual information is replaced with a perceptual integration stage modulating evidence accumulation. They suggested that this model particularly captures decision making regarding stimuli with dynamic noise. We tested this new model in two studies by using Bayesian parameter estimation and model comparison with marginal likelihoods. The first study replicated Smith and colleagues' findings by utilizing the classical random-dot kinomatogram (RDK) task, which requires judging the motion direction of randomly moving dots (motion discrimination task). In the second study, we used a novel type of stimulus designed to be like RDKs but with randomized hue of stationary dots (color discrimination task). This study also found TV-DDM to be superior, suggesting that perceptual integration is also relevant for static noise possibly where integration over space is required. We also found support for within-trial changes in decision boundaries ("collapsing boundaries"). Interestingly, and in contrast to most studies, the boundaries increased with increasing task difficulty (amount of noise). Future studies will need to test this finding in a formal model.

摘要

漂移扩散模型(DDM)是理解人类决策的一种常用方法。它将决策视为关于视觉刺激的证据积累,直到积累到足够的证据来做出决策(决策边界)。最近,史密斯及其同事提出了DDM的一种扩展,即时变DDM(TV-DDM)。在这里,证据积累基于感知信息的完整表示进行操作这一标准简化被一个调节证据积累的感知整合阶段所取代。他们认为,该模型特别适用于处理具有动态噪声的刺激的决策。我们在两项研究中通过使用贝叶斯参数估计以及与边际似然的模型比较来测试这个新模型。第一项研究通过利用经典的随机点运动图(RDK)任务重复了史密斯及其同事的发现,该任务要求判断随机移动点的运动方向(运动辨别任务)。在第二项研究中,我们使用了一种新型刺激,其设计类似于RDK,但静止点的色调是随机的(颜色辨别任务)。这项研究也发现TV-DDM更具优势,这表明感知整合对于可能需要进行空间整合的静态噪声也很重要。我们还发现了对决策边界在试验内变化(“边界收缩”)的支持。有趣的是,与大多数研究不同,边界随着任务难度(噪声量)的增加而增加。未来的研究需要在一个正式模型中测试这一发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3545/11354202/29d7952919c5/entropy-26-00642-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索