1 Department of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University , Tehran 14115-134 , Iran.
2 Faculty of Informatics, Chemnitz University of Technology , Straße der Nationen 62, R. B216, 09111 Chemnitz , Germany.
J R Soc Interface. 2019 May 31;16(154):20180344. doi: 10.1098/rsif.2018.0344.
The selective attention for identification model (SAIM) is an established model of selective visual attention. SAIM implements translation-invariant object recognition, in scenes with multiple objects, using the parallel distributed processing (PDP) paradigm. Here, we show that SAIM can be formulated as Bayesian inference. Crucially, SAIM uses excitatory feedback to combine top-down information (i.e. object knowledge) with bottom-up sensory information. By contrast, predictive coding implementations of Bayesian inference use inhibitory feedback. By formulating SAIM as a predictive coding scheme, we created a new version of SAIM that uses inhibitory feedback. Simulation studies showed that both types of architectures can reproduce the response time costs induced by multiple objects-as found in visual search experiments. However, due to the different nature of the feedback, the two SAIM schemes make distinct predictions about the motifs of microcircuits mediating the effects of top-down afferents. We discuss empirical (neuroimaging) methods to test the predictions of the two inference architectures.
选择性注意识别模型(SAIM)是一种已建立的选择性视觉注意模型。SAIM 使用并行分布式处理(PDP)范式,在具有多个物体的场景中实现了平移不变的物体识别。在这里,我们表明 SAIM 可以被表述为贝叶斯推理。至关重要的是,SAIM 使用兴奋性反馈将自上而下的信息(即物体知识)与自下而上的感觉信息结合起来。相比之下,贝叶斯推理的预测编码实现使用抑制性反馈。通过将 SAIM 表述为预测编码方案,我们创建了一个使用抑制性反馈的新的 SAIM 版本。模拟研究表明,这两种架构都可以再现视觉搜索实验中发现的多个物体引起的反应时成本。然而,由于反馈的性质不同,这两种 SAIM 方案对介导自上而下传入的影响的微电路模式做出了不同的预测。我们讨论了经验(神经影像学)方法来检验这两种推理架构的预测。