一种将漂移扩散决策模型拟合到逐次试验数据的过完备方法。

An Overcomplete Approach to Fitting Drift-Diffusion Decision Models to Trial-By-Trial Data.

作者信息

Feltgen Q, Daunizeau J

机构信息

Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.

ETH, Zurich, Switzerland.

出版信息

Front Artif Intell. 2021 Apr 9;4:531316. doi: 10.3389/frai.2021.531316. eCollection 2021.

Abstract

Drift-diffusion models or DDMs are becoming a standard in the field of computational neuroscience. They extend models from signal detection theory by proposing a simple mechanistic explanation for the observed relationship between decision outcomes and reaction times (RT). In brief, they assume that decisions are triggered once the accumulated evidence in favor of a particular alternative option has reached a predefined threshold. Fitting a DDM to empirical data then allows one to interpret observed group or condition differences in terms of a change in the underlying model parameters. However, current approaches only yield reliable parameter estimates in specific situations (c.f. fixed drift rates vs drift rates varying over trials). In addition, they become computationally unfeasible when more general DDM variants are considered (e.g., with collapsing bounds). In this note, we propose a fast and efficient approach to parameter estimation that relies on fitting a "self-consistency" equation that RT fulfill under the DDM. This effectively bypasses the computational bottleneck of standard DDM parameter estimation approaches, at the cost of estimating the trial-specific neural noise variables that perturb the underlying evidence accumulation process. For the purpose of behavioral data analysis, these act as nuisance variables and render the model "overcomplete," which is finessed using a variational Bayesian system identification scheme. However, for the purpose of neural data analysis, estimates of neural noise perturbation terms are a desirable (and unique) feature of the approach. Using numerical simulations, we show that this "overcomplete" approach matches the performance of current parameter estimation approaches for simple DDM variants, and outperforms them for more complex DDM variants. Finally, we demonstrate the added-value of the approach, when applied to a recent value-based decision making experiment.

摘要

漂移扩散模型(DDMs)正成为计算神经科学领域的标准模型。它们通过为观察到的决策结果与反应时间(RT)之间的关系提出一个简单的机制性解释,扩展了信号检测理论的模型。简而言之,它们假设一旦支持某个特定备选选项的累积证据达到预定义阈值,决策就会触发。将DDM拟合到实证数据,然后就可以根据基础模型参数的变化来解释观察到的组间差异或条件差异。然而,当前的方法仅在特定情况下才能产生可靠的参数估计(例如,固定漂移率与试验中变化的漂移率)。此外,当考虑更一般的DDM变体时(例如,具有收缩边界),它们在计算上变得不可行。在本笔记中,我们提出了一种快速有效的参数估计方法,该方法依赖于拟合一个RT在DDM下满足的“自洽”方程。这有效地绕过了标准DDM参数估计方法的计算瓶颈,但代价是估计会干扰基础证据积累过程的特定试验神经噪声变量。对于行为数据分析而言,这些变量充当干扰变量,使模型“过度完备”,而这可以通过变分贝叶斯系统识别方案来巧妙处理。然而,对于神经数据分析而言,神经噪声扰动项的估计是该方法的一个理想(且独特)特征。通过数值模拟,我们表明这种“过度完备”方法对于简单的DDM变体与当前参数估计方法的性能相当,而对于更复杂的DDM变体则优于它们。最后,我们展示了该方法应用于最近的基于价值的决策实验时的附加价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4059/8064018/8aeb1cbc5db9/frai-04-531316-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索