Xue Dong, Liu Naichao, Chen Xinyi, Liu Fangzhou
Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
Research Institute of Intelligent Control and Systems, School of Astronautics, Harbin Institute of Technology, Harbin 150001, China.
Entropy (Basel). 2024 Jul 30;26(8):654. doi: 10.3390/e26080654.
This article addresses the crucial issues of how asymptomatic individuals and population movements influence the spread of epidemics. Specifically, a discrete-time networked Susceptible-Asymptomatic-Infected-Recovered (SAIR) model that integrates population flow is introduced to investigate the dynamics of epidemic transmission among individuals. In contrast to existing data-driven system identification approaches that identify the network structure or system parameters separately, a joint estimation framework is developed in this study. The joint framework incorporates historical measurements and enables the simultaneous estimation of transmission topology and epidemic factors. The use of the joint estimation scheme reduces the estimation error. The stability of equilibria and convergence behaviors of proposed dynamics are then analyzed. Furthermore, the sensitivity of the proposed model to population movements is evaluated in terms of the basic reproduction number. This article also rigorously investigates the effectiveness of non-pharmaceutical interventions via distributively controlling population flow in curbing virus transmission. It is found that the population flow control strategy reduces the number of infections during the epidemic.
本文探讨了无症状个体和人口流动如何影响疫情传播这一关键问题。具体而言,引入了一个整合人口流动的离散时间网络化易感-无症状-感染-康复(SAIR)模型,以研究个体间疫情传播的动态过程。与现有分别识别网络结构或系统参数的数据驱动系统识别方法不同,本研究开发了一个联合估计框架。该联合框架纳入了历史测量数据,并能够同时估计传播拓扑结构和疫情因素。联合估计方案的使用减少了估计误差。然后分析了所提出动态过程的平衡点稳定性和收敛行为。此外,根据基本再生数评估了所提出模型对人口流动的敏感性。本文还通过分布式控制人口流动来严格研究非药物干预措施在遏制病毒传播方面的有效性。研究发现,人口流动控制策略减少了疫情期间的感染数量。