Suppr超能文献

为应对未来的 COVID-19 浪潮做准备:从德国基于数据的非药物干预评估中获得的见解和局限性。

Preparing for a future COVID-19 wave: insights and limitations from a data-driven evaluation of non-pharmaceutical interventions in Germany.

机构信息

University of California, Davis, Davis, CA, USA.

出版信息

Sci Rep. 2020 Nov 18;10(1):20084. doi: 10.1038/s41598-020-76244-6.

Abstract

To contain the COVID-19 pandemic, governments introduced strict Non-Pharmaceutical Interventions (NPI) that restricted movement, public gatherings, national and international travel, and shut down large parts of the economy. Yet, the impact of the enforcement and subsequent loosening of these policies on the spread of COVID-19 is not well understood. Accordingly, we measure the impact of NPIs on mitigating disease spread by exploiting the spatio-temporal variations in policy measures across the 16 states of Germany. While this quasi-experiment does not allow for causal identification, each policy's effect on reducing disease spread provides meaningful insights. We adapt the Susceptible-Exposed-Infected-Recovered model for disease propagation to include data on daily confirmed cases, interstate movement, and social distancing. By combining the model with measures of policy contributions on mobility reduction, we forecast scenarios for relaxing various types of NPIs. Our model finds that in Germany policies that mandated contact restrictions (e.g., movement in public space limited to two persons or people co-living), closure of educational institutions (e.g., schools), and retail outlet closures are associated with the sharpest drops in movement within and across states. Contact restrictions appear to be most effective at lowering COVID-19 cases, while border closures appear to have only minimal effects at mitigating the spread of the disease, even though cross-border travel might have played a role in seeding the disease in the population. We believe that a deeper understanding of the policy effects on mitigating the spread of COVID-19 allows a more accurate forecast of disease spread when NPIs are partially loosened and gives policymakers better data for making informed decisions.

摘要

为了控制 COVID-19 大流行,各国政府实施了严格的非药物干预(NPI)措施,限制了人员流动、公众集会、国内外旅行,并关闭了经济的很大一部分。然而,这些政策的实施和随后的放松对 COVID-19 传播的影响还不太清楚。因此,我们利用德国 16 个州的政策措施在时空上的变化来衡量 NPI 对减轻疾病传播的影响。虽然这种准实验不能进行因果识别,但每种政策对减少疾病传播的影响都提供了有意义的见解。我们将疾病传播的易感-暴露-感染-恢复模型进行了改编,纳入了每日确诊病例、州际流动和社会隔离的数据。通过将模型与减少流动性的政策措施结合起来,我们预测了放松各种类型 NPI 的情景。我们的模型发现,在德国,强制实施接触限制(例如,公共空间的人员流动限制在两人或共同居住的人)、关闭教育机构(例如,学校)和关闭零售店的政策与各州内和州际间流动的急剧下降有关。接触限制似乎在降低 COVID-19 病例方面最有效,而边境关闭似乎在减轻疾病传播方面只有最小的影响,尽管跨境旅行可能在疾病在人群中传播方面发挥了作用。我们认为,更深入地了解政策对减轻 COVID-19 传播的影响,可以更准确地预测 NPI 部分放松时疾病的传播,并为政策制定者提供更好的数据,以便做出明智的决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9299/7674458/58e7c66bac07/41598_2020_76244_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验