Suppr超能文献

复杂网络中一种改进的双向免疫SIR模型的动力学分析

Dynamical Analysis of an Improved Bidirectional Immunization SIR Model in Complex Network.

作者信息

Han Shixiang, Yan Guanghui, Pei Huayan, Chang Wenwen

机构信息

School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.

Key Laboratory of Media Convergence Technology and Communication, Lanzhou 730070, China.

出版信息

Entropy (Basel). 2024 Mar 2;26(3):227. doi: 10.3390/e26030227.

Abstract

In order to investigate the impact of two immunization strategies-vaccination targeting susceptible individuals to reduce their infection rate and clinical medical interventions targeting infected individuals to enhance their recovery rate-on the spread of infectious diseases in complex networks, this study proposes a bilinear SIR infectious disease model that considers bidirectional immunization. By analyzing the conditions for the existence of endemic equilibrium points, we derive the basic reproduction numbers and outbreak thresholds for both homogeneous and heterogeneous networks. The epidemic model is then reconstructed and extensively analyzed using continuous-time Markov chain (CTMC) methods. This analysis includes the investigation of transition probabilities, transition rate matrices, steady-state distributions, and the transition probability matrix based on the embedded chain. In numerical simulations, a notable concordance exists between the outcomes of CTMC and mean-field (MF) simulations, thereby substantiating the efficacy of the CTMC model. Moreover, the CTMC-based model adeptly captures the inherent stochastic fluctuation in the disease transmission, which is consistent with the mathematical properties of Markov chains. We further analyze the relationship between the system's steady-state infection density and the immunization rate through MCS. The results suggest that the infection density decreases with an increase in the immunization rate among susceptible individuals. The current research results will enhance our understanding of infectious disease transmission patterns in real-world scenarios, providing valuable theoretical insights for the development of epidemic prevention and control strategies.

摘要

为了研究两种免疫策略——针对易感个体进行疫苗接种以降低其感染率,以及针对感染个体进行临床医疗干预以提高其康复率——对复杂网络中传染病传播的影响,本研究提出了一种考虑双向免疫的双线性SIR传染病模型。通过分析地方病平衡点存在的条件,我们推导了均匀网络和异质网络的基本再生数和爆发阈值。然后使用连续时间马尔可夫链(CTMC)方法对该流行病模型进行重构和广泛分析。该分析包括对转移概率、转移率矩阵、稳态分布以及基于嵌入链的转移概率矩阵的研究。在数值模拟中,CTMC模拟结果与平均场(MF)模拟结果之间存在显著的一致性,从而证实了CTMC模型的有效性。此外,基于CTMC的模型能够很好地捕捉疾病传播中固有的随机波动,这与马尔可夫链的数学性质一致。我们通过蒙特卡罗模拟(MCS)进一步分析了系统稳态感染密度与免疫率之间的关系。结果表明,易感个体中的免疫率增加时,感染密度会降低。当前的研究结果将增进我们对现实世界中传染病传播模式的理解,为制定疫情防控策略提供有价值的理论见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a68/10969396/51fc5cf5bfc3/entropy-26-00227-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验