Suppr超能文献

基于耳廓狐优化算法和混合核极限学习机的综合能源系统多能源负荷预测方法

Multi-Energy Load Prediction Method for Integrated Energy System Based on Fennec Fox Optimization Algorithm and Hybrid Kernel Extreme Learning Machine.

作者信息

Shen Yang, Li Deyi, Wang Wenbo

机构信息

College of Science, Wuhan University of Science and Technology, Wuhan 430081, China.

Hubei Province Key Laboratory of System Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430065, China.

出版信息

Entropy (Basel). 2024 Aug 17;26(8):699. doi: 10.3390/e26080699.

Abstract

To meet the challenges of energy sustainability, the integrated energy system (IES) has become a key component in promoting the development of innovative energy systems. Accurate and reliable multivariate load prediction is a prerequisite for IES optimal scheduling and steady running, but the uncertainty of load fluctuation and many influencing factors increase the difficulty of forecasting. Therefore, this article puts forward a multi-energy load prediction approach of the IES, which combines the fennec fox optimization algorithm (FFA) and hybrid kernel extreme learning machine. Firstly, the comprehensive weight method is used to combine the entropy weight method and Pearson correlation coefficient, fully considering the information content and correlation, selecting the key factors affecting the prediction, and ensuring that the input features can effectively modify the prediction results. Secondly, the coupling relationship between the multi-energy load is learned and predicted using the hybrid kernel extreme learning machine. At the same time, the FFA is used for parameter optimization, which reduces the randomness of parameter setting. Finally, the approach is utilized for the measured data at Arizona State University to verify its effectiveness in multi-energy load forecasting. The results indicate that the mean absolute error (MAE) of the proposed method is 0.0959, 0.3103 and 0.0443, respectively. The root mean square error (RMSE) is 0.1378, 0.3848 and 0.0578, respectively. The weighted mean absolute percentage error (WMAPE) is only 1.915%. Compared to other models, this model has a higher accuracy, with the maximum reductions on MAE, RMSE and WMAPE of 0.3833, 0.491 and 2.8138%, respectively.

摘要

为应对能源可持续性挑战,综合能源系统(IES)已成为推动创新能源系统发展的关键组成部分。准确可靠的多变量负荷预测是IES优化调度和稳定运行的前提条件,但负荷波动的不确定性以及众多影响因素增加了预测难度。因此,本文提出了一种IES的多能源负荷预测方法,该方法将耳廓狐优化算法(FFA)与混合核极限学习机相结合。首先,采用综合权重法将熵权法和皮尔逊相关系数相结合,充分考虑信息含量和相关性,选取影响预测的关键因素,确保输入特征能够有效修正预测结果。其次,利用混合核极限学习机学习和预测多能源负荷之间的耦合关系。同时,采用FFA进行参数优化,降低了参数设置的随机性。最后,将该方法应用于亚利桑那州立大学的实测数据,验证其在多能源负荷预测中的有效性。结果表明,所提方法的平均绝对误差(MAE)分别为0.0959、0.3103和0.0443;均方根误差(RMSE)分别为0.1378、0.3848和0.0578;加权平均绝对百分比误差(WMAPE)仅为1.915%。与其他模型相比,该模型具有更高的精度,MAE、RMSE和WMAPE的最大降幅分别为0.3833、0.491和2.8138%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c5b/11353547/9deb0a3cec56/entropy-26-00699-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验