Suppr超能文献

考虑建模不确定性的天然气制甲醇过程中多能源系统基于熵的随机优化

Entropy-Based Stochastic Optimization of Multi-Energy Systems in Gas-to-Methanol Processes Subject to Modeling Uncertainties.

作者信息

Wang Xueteng, Wang Jiandong, Wei Mengyao, Yue Yang

机构信息

College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China.

Shandong Rongxin Group Co., Ltd., Zoucheng 273517, China.

出版信息

Entropy (Basel). 2025 Jan 9;27(1):52. doi: 10.3390/e27010052.

Abstract

In gas-to-methanol processes, optimizing multi-energy systems is a critical challenge toward efficient energy allocation. This paper proposes an entropy-based stochastic optimization method for a multi-energy system in a gas-to-methanol process, aiming to achieve optimal allocation of gas, steam, and electricity to ensure executability under modeling uncertainties. First, mechanistic models are developed for major chemical equipments, including the desulfurization, steam boilers, air separation, and syngas compressors. Structural errors in these models under varying operating conditions result in noticeable model uncertainties. Second, Bayesian estimation theory and the Markov Chain Monte Carlo approach are employed to analyze the differences between historical data and model predictions under varying operating conditions, thereby quantifying modeling uncertainties. Finally, subject to constraints in the model uncertainties, equipment capacities, and energy balance, a multi-objective stochastic optimization model is formulated to minimize gas loss, steam loss, and operating costs. The entropy weight approach is then applied to filter the Pareto front solution set, selecting a final optimal solution with minimal subjectivity and preferences. Case studies using Aspen Hysys-based simulations show that optimization solutions considering model uncertainties outperform the counterparts from a standard deterministic optimization in terms of executability.

摘要

在天然气制甲醇工艺中,优化多能源系统是实现高效能源分配的一项关键挑战。本文提出了一种基于熵的天然气制甲醇工艺多能源系统随机优化方法,旨在实现天然气、蒸汽和电力的优化分配,以确保在建模不确定性下的可执行性。首先,针对主要化工设备开发了机理模型,包括脱硫、蒸汽锅炉、空气分离和合成气压缩机。这些模型在不同运行条件下的结构误差导致了显著的模型不确定性。其次,采用贝叶斯估计理论和马尔可夫链蒙特卡罗方法分析不同运行条件下历史数据与模型预测之间的差异,从而量化建模不确定性。最后,在模型不确定性、设备容量和能量平衡的约束下,建立了一个多目标随机优化模型,以最小化天然气损失、蒸汽损失和运营成本。然后应用熵权法对帕累托前沿解集进行筛选,选择一个主观性和偏好最小的最终最优解。基于Aspen Hysys模拟的案例研究表明,考虑模型不确定性的优化解在可执行性方面优于标准确定性优化的对应解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8993/11765456/6a89fd02599e/entropy-27-00052-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验