使用优化卷积神经网络的脑肿瘤检测与分类

Brain Tumor Detection and Classification Using an Optimized Convolutional Neural Network.

作者信息

Aamir Muhammad, Namoun Abdallah, Munir Sehrish, Aljohani Nasser, Alanazi Meshari Huwaytim, Alsahafi Yaser, Alotibi Faris

机构信息

Department of Computer Science, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan.

Department of Computer Science, Superior University Lahore, Lahore 54000, Pakistan.

出版信息

Diagnostics (Basel). 2024 Aug 7;14(16):1714. doi: 10.3390/diagnostics14161714.

Abstract

Brain tumors are a leading cause of death globally, with numerous types varying in malignancy, and only 12% of adults diagnosed with brain cancer survive beyond five years. This research introduces a hyperparametric convolutional neural network (CNN) model to identify brain tumors, with significant practical implications. By fine-tuning the hyperparameters of the CNN model, we optimize feature extraction and systematically reduce model complexity, thereby enhancing the accuracy of brain tumor diagnosis. The critical hyperparameters include batch size, layer counts, learning rate, activation functions, pooling strategies, padding, and filter size. The hyperparameter-tuned CNN model was trained on three different brain MRI datasets available at Kaggle, producing outstanding performance scores, with an average value of 97% for accuracy, precision, recall, and F1-score. Our optimized model is effective, as demonstrated by our methodical comparisons with state-of-the-art approaches. Our hyperparameter modifications enhanced the model performance and strengthened its capacity for generalization, giving medical practitioners a more accurate and effective tool for making crucial judgments regarding brain tumor diagnosis. Our model is a significant step in the right direction toward trustworthy and accurate medical diagnosis, with practical implications for improving patient outcomes.

摘要

脑肿瘤是全球主要的死因之一,有多种类型,恶性程度各不相同,只有12%被诊断为脑癌的成年人能存活超过五年。本研究引入了一种超参数卷积神经网络(CNN)模型来识别脑肿瘤,具有重要的实际意义。通过微调CNN模型的超参数,我们优化了特征提取并系统地降低了模型复杂度,从而提高了脑肿瘤诊断的准确性。关键的超参数包括批量大小、层数、学习率、激活函数、池化策略、填充和滤波器大小。经过超参数调整的CNN模型在Kaggle上可用的三个不同的脑MRI数据集上进行了训练,产生了出色的性能分数,准确率、精确率、召回率和F1分数的平均值为97%。我们的优化模型是有效的,这在我们与现有最先进方法的系统比较中得到了证明。我们对超参数的修改提高了模型性能并增强了其泛化能力,为医学从业者提供了一个更准确、有效的工具,用于对脑肿瘤诊断做出关键判断。我们的模型朝着可靠和准确的医学诊断迈出了重要的一步,对改善患者预后具有实际意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab53/11353951/5b15c49d0621/diagnostics-14-01714-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索