Alkaron Wasan, Almansoori Alaa, Balázsi Katalin, Balázsi Csaba
Institute for Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary.
Doctoral School of Materials Science and Technologies, Óbuda University, Bécsi Str. 96/B, 1030 Budapest, Hungary.
Materials (Basel). 2024 Aug 20;17(16):4117. doi: 10.3390/ma17164117.
Hydroxyapatite (HAp) polymer composites have gained significant attention due to their applications in bone regeneration and tooth implants. This review examines the synthesis, properties, and applications of Hap, highlighting various manufacturing methods, including wet, dry, hydrothermal, and sol-gel processes. The properties of HAp are influenced by precursor materials and are commonly obtained from natural calcium-rich sources like eggshells, seashells, and fish scales. Composite materials, such as cellulose-hydroxyapatite and gelatin-hydroxyapatite, exhibit promising strength and biocompatibility for bone and tissue replacement. Metallic implants and scaffolds enhance stability, including well-known titanium-based and stainless steel-based implants and ceramic body implants. Biopolymers, like chitosan and alginate, combined with Hap, offer chemical stability and strength for tissue engineering. Collagen, fibrin, and gelatin play crucial roles in mimicking natural bone composition. Various synthesis methods like sol-gel, hydrothermal, and solution casting produce HAp crystals, with potential applications in bone repair and regeneration. Additionally, the use of biowaste materials, like eggshells and snails or seashells, not only supports sustainable HAp production but also reduces environmental impact. This review emphasizes the significance of understanding the properties of calcium-phosphate (Ca-P) compounds and processing methods for scaffold generation, highlighting novel characteristics and mechanisms of biomaterials in bone healing. Comparative studies of these methods in specific applications underscore the versatility and potential of HAp composites in biomedical engineering. Overall, HAp composites offer promising solutions for improving patient outcomes in bone replacement and tissue engineering and advancing medical practices.
羟基磷灰石(HAp)聚合物复合材料因其在骨再生和牙齿植入方面的应用而备受关注。本文综述了HAp的合成、性质及应用,重点介绍了包括湿法、干法、水热法和溶胶 - 凝胶法在内的各种制造方法。HAp的性质受前驱体材料影响,通常从蛋壳、贝壳和鱼鳞等天然富钙源中获得。纤维素 - 羟基磷灰石和明胶 - 羟基磷灰石等复合材料在骨和组织替代方面表现出有前景的强度和生物相容性。金属植入物和支架增强了稳定性,包括著名的钛基和不锈钢基植入物以及陶瓷体植入物。壳聚糖和藻酸盐等生物聚合物与HAp结合,为组织工程提供化学稳定性和强度。胶原蛋白、纤维蛋白和明胶在模拟天然骨成分方面发挥着关键作用。溶胶 - 凝胶法、水热法和溶液浇铸法等各种合成方法可制备HAp晶体,在骨修复和再生方面具有潜在应用。此外,使用蛋壳、蜗牛壳或贝壳等生物废料不仅支持可持续的HAp生产,还减少了对环境的影响。本文强调了了解磷酸钙(Ca - P)化合物性质和支架生成加工方法的重要性,突出了生物材料在骨愈合中的新特性和机制。这些方法在特定应用中的比较研究强调了HAp复合材料在生物医学工程中的多功能性和潜力。总体而言,HAp复合材料为改善骨替代和组织工程中的患者预后以及推进医疗实践提供了有前景的解决方案。
Materials (Basel). 2024-8-20
Appl Biochem Biotechnol. 2023-6
Tissue Eng Part C Methods. 2022-8
ACS Appl Mater Interfaces. 2014-10-8
Polymers (Basel). 2021-9-11
Biol Trace Elem Res. 2025-7-30
Materials (Basel). 2025-6-17
J Funct Biomater. 2025-4-2
Front Bioeng Biotechnol. 2025-1-10