文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于组织再生的羟基磷灰石基天然生物聚合物复合材料

Hydroxyapatite-Based Natural Biopolymer Composite for Tissue Regeneration.

作者信息

Alkaron Wasan, Almansoori Alaa, Balázsi Katalin, Balázsi Csaba

机构信息

Institute for Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary.

Doctoral School of Materials Science and Technologies, Óbuda University, Bécsi Str. 96/B, 1030 Budapest, Hungary.

出版信息

Materials (Basel). 2024 Aug 20;17(16):4117. doi: 10.3390/ma17164117.


DOI:10.3390/ma17164117
PMID:39203295
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11356673/
Abstract

Hydroxyapatite (HAp) polymer composites have gained significant attention due to their applications in bone regeneration and tooth implants. This review examines the synthesis, properties, and applications of Hap, highlighting various manufacturing methods, including wet, dry, hydrothermal, and sol-gel processes. The properties of HAp are influenced by precursor materials and are commonly obtained from natural calcium-rich sources like eggshells, seashells, and fish scales. Composite materials, such as cellulose-hydroxyapatite and gelatin-hydroxyapatite, exhibit promising strength and biocompatibility for bone and tissue replacement. Metallic implants and scaffolds enhance stability, including well-known titanium-based and stainless steel-based implants and ceramic body implants. Biopolymers, like chitosan and alginate, combined with Hap, offer chemical stability and strength for tissue engineering. Collagen, fibrin, and gelatin play crucial roles in mimicking natural bone composition. Various synthesis methods like sol-gel, hydrothermal, and solution casting produce HAp crystals, with potential applications in bone repair and regeneration. Additionally, the use of biowaste materials, like eggshells and snails or seashells, not only supports sustainable HAp production but also reduces environmental impact. This review emphasizes the significance of understanding the properties of calcium-phosphate (Ca-P) compounds and processing methods for scaffold generation, highlighting novel characteristics and mechanisms of biomaterials in bone healing. Comparative studies of these methods in specific applications underscore the versatility and potential of HAp composites in biomedical engineering. Overall, HAp composites offer promising solutions for improving patient outcomes in bone replacement and tissue engineering and advancing medical practices.

摘要

羟基磷灰石(HAp)聚合物复合材料因其在骨再生和牙齿植入方面的应用而备受关注。本文综述了HAp的合成、性质及应用,重点介绍了包括湿法、干法、水热法和溶胶 - 凝胶法在内的各种制造方法。HAp的性质受前驱体材料影响,通常从蛋壳、贝壳和鱼鳞等天然富钙源中获得。纤维素 - 羟基磷灰石和明胶 - 羟基磷灰石等复合材料在骨和组织替代方面表现出有前景的强度和生物相容性。金属植入物和支架增强了稳定性,包括著名的钛基和不锈钢基植入物以及陶瓷体植入物。壳聚糖和藻酸盐等生物聚合物与HAp结合,为组织工程提供化学稳定性和强度。胶原蛋白、纤维蛋白和明胶在模拟天然骨成分方面发挥着关键作用。溶胶 - 凝胶法、水热法和溶液浇铸法等各种合成方法可制备HAp晶体,在骨修复和再生方面具有潜在应用。此外,使用蛋壳、蜗牛壳或贝壳等生物废料不仅支持可持续的HAp生产,还减少了对环境的影响。本文强调了了解磷酸钙(Ca - P)化合物性质和支架生成加工方法的重要性,突出了生物材料在骨愈合中的新特性和机制。这些方法在特定应用中的比较研究强调了HAp复合材料在生物医学工程中的多功能性和潜力。总体而言,HAp复合材料为改善骨替代和组织工程中的患者预后以及推进医疗实践提供了有前景的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/d05b1ffeb3d0/materials-17-04117-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/0809b203a501/materials-17-04117-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/de8302cde4a1/materials-17-04117-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/d0093faf0554/materials-17-04117-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/1ee13ae4d228/materials-17-04117-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/d32e89d3b444/materials-17-04117-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/de4bea852fdc/materials-17-04117-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/84b9d38873e7/materials-17-04117-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/67d510ba9498/materials-17-04117-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/0613dc0e3ccd/materials-17-04117-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/969e93765372/materials-17-04117-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/71601137257c/materials-17-04117-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/b91e459e2748/materials-17-04117-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/d05b1ffeb3d0/materials-17-04117-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/0809b203a501/materials-17-04117-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/de8302cde4a1/materials-17-04117-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/d0093faf0554/materials-17-04117-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/1ee13ae4d228/materials-17-04117-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/d32e89d3b444/materials-17-04117-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/de4bea852fdc/materials-17-04117-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/84b9d38873e7/materials-17-04117-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/67d510ba9498/materials-17-04117-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/0613dc0e3ccd/materials-17-04117-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/969e93765372/materials-17-04117-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/71601137257c/materials-17-04117-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/b91e459e2748/materials-17-04117-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa1/11356673/d05b1ffeb3d0/materials-17-04117-g013.jpg

相似文献

[1]
Hydroxyapatite-Based Natural Biopolymer Composite for Tissue Regeneration.

Materials (Basel). 2024-8-20

[2]
Biosynthesis and characterization of hydroxyapatite and its composite (hydroxyapatite-gelatin-chitosan-fibrin-bone ash) for bone tissue engineering applications.

Int J Biol Macromol. 2019-2-13

[3]
Nano Hydroxyapatite for Biomedical Applications Derived from Chemical and Natural Sources by Simple Precipitation Method.

Appl Biochem Biotechnol. 2023-6

[4]
Immunomodulatory Properties: The Accelerant of Hydroxyapatite-Based Materials for Bone Regeneration.

Tissue Eng Part C Methods. 2022-8

[5]
Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering.

J Biomed Mater Res A. 2012-2

[6]
Titanium-enriched hydroxyapatite-gelatin scaffolds with osteogenically differentiated progenitor cell aggregates for calvaria bone regeneration.

Tissue Eng Part A. 2013-4-16

[7]
Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.

ACS Appl Mater Interfaces. 2014-10-8

[8]
Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering.

Biomed Mater. 2008-9

[9]
Alginic Acid Polymer-Hydroxyapatite Composites for Bone Tissue Engineering.

Polymers (Basel). 2021-9-11

[10]
Hydroxyapatite or Fluorapatite-Which Bioceramic Is Better as a Base for the Production of Bone Scaffold?-A Comprehensive Comparative Study.

Int J Mol Sci. 2023-3-14

引用本文的文献

[1]
Boron and Zinc Co-doped Hydroxyapatites for Bone Tissue Engineering Applications.

Biol Trace Elem Res. 2025-7-30

[2]
Synthesis and Characterization of Calcium Hydroxyapatite from Waste Phosphogypsum.

Materials (Basel). 2025-6-17

[3]
Hydroxyapatite microspheres encapsulated within hybrid hydrogel promote skin regeneration through the activation of Calcium Signaling and Motor Protein pathway.

Bioact Mater. 2025-4-14

[4]
Application of Hydroxyapatite Composites in Bone Tissue Engineering: A Review.

J Funct Biomater. 2025-4-2

[5]
Therapeutic functions of medical implants from various material categories with integrated biomacromolecular systems.

Front Bioeng Biotechnol. 2025-1-10

本文引用的文献

[1]
Seaweed-based alginate/hydroxyapatite composite for the effective removal of bacteria, cyanobacteria, algae, and crystal violet from water.

J Biol Eng. 2023-11-14

[2]
3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration.

Heliyon. 2023-8-22

[3]
Preparation and characterization of 3D hydroxyapatite/collagen scaffolds and its application in bone regeneration with bone morphogenetic protein-2.

RSC Adv. 2023-7-31

[4]
Calcium Phosphate-Based Nanomaterials: Preparation, Multifunction, and Application for Bone Tissue Engineering.

Molecules. 2023-6-15

[5]
Biomimetic Hydroxyapatite Crystals Growth on Phosphorylated Chitosan Films by In Vitro Mineralization Used as Dental Substitute Materials.

Polymers (Basel). 2023-5-26

[6]
Manufacturing methods, properties, and potential applications in bone tissue regeneration of hydroxyapatite-chitosan biocomposites: A review.

Int J Biol Macromol. 2023-7-15

[7]
Gelatin nanofibers: Recent insights in synthesis, bio-medical applications and limitations.

Heliyon. 2023-5-13

[8]
Effect of full pulpotomy using a calcium silicate-based bioactive ceramic in adult permanent teeth with symptoms indicative of irreversible pulpitis: A retrospective study.

J Am Dent Assoc. 2023-6

[9]
Micro-hydroxyapatite reinforced Ti-based composite with tailored characteristics to minimize stress-shielding impact in bio-implant applications.

J Mech Behav Biomed Mater. 2023-6

[10]
Effect of Filler Content on the Morphology and Physical Properties of Poly(Lactic Acid)-Hydroxyapatite Composites.

Materials (Basel). 2023-1-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索