Suppr超能文献

使用智能显微镜扫描仪和图像识别模型进行肺结核诊断以改进涂片抗酸杆菌检测

Pulmonary Tuberculosis Diagnosis Using an Intelligent Microscopy Scanner and Image Recognition Model for Improved Acid-Fast Bacilli Detection in Smears.

作者信息

Chen Wei-Chuan, Chang Chi-Chuan, Lin Yusen Eason

机构信息

Division of Teaching and Education, Teaching and Research Department, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan.

Department of Pharmacy Master Program, Tajen University, Yanpu 907101, Taiwan.

出版信息

Microorganisms. 2024 Aug 22;12(8):1734. doi: 10.3390/microorganisms12081734.

Abstract

Microscopic examination of acid-fast mycobacterial bacilli (AFB) in sputum smears remains the most economical and readily available method for laboratory diagnosis of pulmonary tuberculosis (TB). However, this conventional approach is low in sensitivity and labor-intensive. An automated microscopy system incorporating artificial intelligence and machine learning for AFB identification was evaluated. The study was conducted at an infectious disease hospital in Jiangsu Province, China, utilizing an intelligent microscope system. A total of 1000 sputum smears were included in the study, with the system capturing digital microscopic images and employing an image recognition model to automatically identify and classify AFBs. Referee technicians served as the gold standard for discrepant results. The automated system demonstrated an overall accuracy of 96.70% (967/1000), sensitivity of 91.94% (194/211), specificity of 97.97% (773/789), and negative predictive value (NPV) of 97.85% (773/790) at a prevalence of 21.1% (211/1000). Incorporating AI and machine learning into an automated microscopy system demonstrated the potential to enhance the sensitivity and efficiency of AFB detection in sputum smears compared to conventional manual microscopy. This approach holds promise for widespread application in TB diagnostics and potentially other fields requiring labor-intensive microscopic examination.

摘要

痰液涂片抗酸分枝杆菌(AFB)的显微镜检查仍然是肺结核(TB)实验室诊断最经济且最容易获得的方法。然而,这种传统方法灵敏度低且劳动强度大。对一种结合人工智能和机器学习用于AFB识别的自动化显微镜系统进行了评估。该研究在中国江苏省的一家传染病医院进行,使用了智能显微镜系统。该研究共纳入1000份痰液涂片,系统采集数字显微图像并采用图像识别模型自动识别和分类AFB。对于有差异的结果,由裁判技术人员作为金标准。在患病率为21.1%(211/1000)时,自动化系统的总体准确率为96.70%(967/1000),灵敏度为91.94%(194/211),特异性为97.97%(773/789),阴性预测值(NPV)为97.85%(773/790)。与传统的手动显微镜检查相比,将人工智能和机器学习纳入自动化显微镜系统显示出提高痰液涂片AFB检测灵敏度和效率的潜力。这种方法有望在结核病诊断以及可能其他需要劳动强度大的显微镜检查的领域广泛应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验