Suppr超能文献

用于基于CT成像的COVID-19检测的区块链联邦学习与深度学习模型

Blockchain-Federated-Learning and Deep Learning Models for COVID-19 Detection Using CT Imaging.

作者信息

Kumar Rajesh, Khan Abdullah Aman, Kumar Jay, Golilarz Noorbakhsh Amiri, Zhang Simin, Ting Yang, Zheng Chengyu, Wang Wenyong

机构信息

Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 China.

University of Electronic Science and Technology of China Chengdu 611731 China.

出版信息

IEEE Sens J. 2021 Apr 30;21(14):16301-16314. doi: 10.1109/JSEN.2021.3076767. eCollection 2021 Jul 15.

Abstract

With the increase of COVID-19 cases worldwide, an effective way is required to diagnose COVID-19 patients. The primary problem in diagnosing COVID-19 patients is the shortage and reliability of testing kits, due to the quick spread of the virus, medical practitioners are facing difficulty in identifying the positive cases. The second real-world problem is to share the data among the hospitals globally while keeping in view the privacy concerns of the organizations. Building a collaborative model and preserving privacy are the major concerns for training a global deep learning model. This paper proposes a framework that collects a small amount of data from different sources (various hospitals) and trains a global deep learning model using blockchain-based federated learning. Blockchain technology authenticates the data and federated learning trains the model globally while preserving the privacy of the organization. First, we propose a data normalization technique that deals with the heterogeneity of data as the data is gathered from different hospitals having different kinds of Computed Tomography (CT) scanners. Secondly, we use Capsule Network-based segmentation and classification to detect COVID-19 patients. Thirdly, we design a method that can collaboratively train a global model using blockchain technology with federated learning while preserving privacy. Additionally, we collected real-life COVID-19 patients' data open to the research community. The proposed framework can utilize up-to-date data which improves the recognition of CT images. Finally, we conducted comprehensive experiments to validate the proposed method. Our results demonstrate better performance for detecting COVID-19 patients.

摘要

随着全球新冠肺炎病例的增加,需要一种有效的方法来诊断新冠肺炎患者。诊断新冠肺炎患者的主要问题是检测试剂盒的短缺和可靠性,由于病毒传播迅速,医护人员在识别阳性病例方面面临困难。第二个现实世界的问题是在全球医院之间共享数据,同时考虑到各机构对隐私的担忧。建立协作模型和保护隐私是训练全球深度学习模型的主要关注点。本文提出了一个框架,该框架从不同来源(各医院)收集少量数据,并使用基于区块链的联邦学习来训练全球深度学习模型。区块链技术对数据进行认证,联邦学习在保护机构隐私的同时在全球范围内训练模型。首先,我们提出一种数据归一化技术,该技术可处理数据的异质性,因为数据是从拥有不同类型计算机断层扫描(CT)扫描仪的不同医院收集的。其次,我们使用基于胶囊网络的分割和分类来检测新冠肺炎患者。第三,我们设计了一种方法,该方法可以使用区块链技术与联邦学习协作训练全球模型,同时保护隐私。此外,我们收集了向研究界开放的真实新冠肺炎患者数据。所提出的框架可以利用最新数据,这提高了对CT图像的识别能力。最后,我们进行了全面实验以验证所提出的方法。我们的结果表明在检测新冠肺炎患者方面具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验