Suppr超能文献

端到端自动驾驶:挑战与前沿

End-to-End Autonomous Driving: Challenges and Frontiers.

作者信息

Chen Li, Wu Penghao, Chitta Kashyap, Jaeger Bernhard, Geiger Andreas, Li Hongyang

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):10164-10183. doi: 10.1109/TPAMI.2024.3435937. Epub 2024 Nov 6.

Abstract

The autonomous driving community has witnessed a rapid growth in approaches that embrace an end-to-end algorithm framework, utilizing raw sensor input to generate vehicle motion plans, instead of concentrating on individual tasks such as detection and motion prediction. End-to-end systems, in comparison to modular pipelines, benefit from joint feature optimization for perception and planning. This field has flourished due to the availability of large-scale datasets, closed-loop evaluation, and the increasing need for autonomous driving algorithms to perform effectively in challenging scenarios. In this survey, we provide a comprehensive analysis of more than 270 papers, covering the motivation, roadmap, methodology, challenges, and future trends in end-to-end autonomous driving. We delve into several critical challenges, including multi-modality, interpretability, causal confusion, robustness, and world models, amongst others. Additionally, we discuss current advancements in foundation models and visual pre-training, as well as how to incorporate these techniques within the end-to-end driving framework.

摘要

自动驾驶领域见证了采用端到端算法框架的方法迅速发展,该框架利用原始传感器输入来生成车辆运动计划,而非专注于诸如检测和运动预测等单个任务。与模块化流水线相比,端到端系统受益于感知和规划的联合特征优化。由于大规模数据集的可用性、闭环评估以及自动驾驶算法在具有挑战性场景中有效运行的需求不断增加,该领域蓬勃发展。在本次综述中,我们对270多篇论文进行了全面分析,涵盖端到端自动驾驶的动机、路线图、方法、挑战和未来趋势。我们深入探讨了几个关键挑战,包括多模态、可解释性、因果混淆、鲁棒性和世界模型等。此外,我们还讨论了基础模型和视觉预训练的当前进展,以及如何将这些技术纳入端到端驾驶框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验