AA. Martinos Center Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
PLF Consulting, 258 Harvard Street #324, Brookline, MA 02446-2904, USA.
Sensors (Basel). 2024 Aug 12;24(16):5214. doi: 10.3390/s24165214.
Electrocorticography (ECoG) is a critical tool in preclinical neuroscience research for studying global network activity. However, integrating ECoG with functional magnetic resonance imaging (fMRI) has posed challenges, due to metal electrode interference with imaging quality and heating around the metallic electrodes. Here, we introduce recent advancements in ECoG grid development that utilize a polymer-thick film on an organic substrate (PTFOS). PTFOS offers notable advantages over traditional ECoG grids. Firstly, it significantly reduces imaging artifacts, ensuring minimal interference with MR image quality when overlaying brain tissue with PTFOS grids. Secondly, during a 30-min fMRI acquisition, the temperature increase associated with PTFOS grids is remarkably low, measuring only 0.4 °C. These findings suggest that utilizing ECoG with PTFOS grids has the potential to enhance the safety and efficacy of neurosurgical procedures. By providing clearer imaging results and mitigating risk factors such as excessive heating during MRI scans, PTFOS-based ECoG grids represent a promising advancement in neurosurgical technology. Furthermore, we describe a cutting-edge open-source system designed for simultaneous electrophysiology and fMRI. This system stands out due to its exceptionally low input noise levels (<0.6 V peak-to-peak), robust electromagnetic compatibility (it is suitable for use in MRI environments up to 9.4 teslas), and the inclusion of user-programmable real-time signal-processing capabilities. The open-platform software is a key feature, enabling researchers to swiftly implement and customize real-time signal-processing algorithms to meet specific experimental needs. This innovative system has been successfully utilized in several rodent EEG/fMRI studies, particularly at magnetic field strengths of 4.7 and 9.4 teslas, focusing on the somatosensory system. These studies have allowed for detailed observation of neural activity and responses within this sensory system, providing insights that are critical for advancing our understanding of neurophysiological processes. The versatility and high performance of our system make it an invaluable tool for researchers aiming to integrate and analyze complex datasets from advanced imaging and electrophysiological recordings, ultimately enhancing the depth and scope of neuroscience research.
脑皮层电图(ECoG)是临床前神经科学研究中研究整体网络活动的重要工具。然而,由于金属电极对成像质量的干扰和金属电极周围的加热,将 ECoG 与功能磁共振成像(fMRI)结合一直具有挑战性。在这里,我们介绍了最近在利用有机基底上的聚合物厚膜(PTFOS)开发 ECoG 网格方面的进展。PTFOS 提供了比传统 ECoG 网格显著的优势。首先,它显著减少了成像伪影,当将 PTFOS 网格覆盖在脑组织上时,对磁共振图像质量的干扰最小。其次,在 30 分钟的 fMRI 采集过程中,与 PTFOS 网格相关的温度升高非常低,仅为 0.4°C。这些发现表明,利用具有 PTFOS 网格的 ECoG 有可能提高神经外科手术的安全性和有效性。通过提供更清晰的成像结果并减轻 MRI 扫描过程中过度加热等风险因素,基于 PTFOS 的 ECoG 网格代表了神经外科技术的一项有前途的进展。此外,我们描述了一种用于同时进行电生理学和 fMRI 的尖端开源系统。该系统的突出特点是其极低的输入噪声水平(<0.6 V 峰峰值)、强大的电磁兼容性(适用于高达 9.4 特斯拉的 MRI 环境)以及包括用户可编程实时信号处理功能。开放平台软件是一个关键特征,使研究人员能够快速实现和定制实时信号处理算法,以满足特定的实验需求。该创新系统已成功应用于几项啮齿动物 EEG/fMRI 研究中,特别是在 4.7 和 9.4 特斯拉的磁场强度下,重点研究了感觉系统。这些研究允许对感觉系统中的神经活动和反应进行详细观察,为推进我们对神经生理过程的理解提供了关键的见解。我们系统的多功能性和高性能使其成为研究人员的宝贵工具,旨在整合和分析来自高级成像和电生理记录的复杂数据集,从而提高神经科学研究的深度和广度。