Division of TranslationalMedicine, Wadsworth Center, Albany, NY 12201, USA.
IEEE Rev Biomed Eng. 2011;4:140-54. doi: 10.1109/RBME.2011.2172408.
Many studies over the past two decades have shown that people and animals can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems measure specific features of brain activity and translate them into control signals that drive an output. The sensor modalities that have most commonly been used in BCI studies have been electroencephalographic (EEG) recordings from the scalp and single-neuron recordings from within the cortex. Over the past decade, an increasing number of studies has explored the use of electrocorticographic (ECoG) activity recorded directly from the surface of the brain. ECoG has attracted substantial and increasing interest, because it has been shown to reflect specific details of actual and imagined actions, and because its technical characteristics should readily support robust and chronic implementations of BCI systems in humans. This review provides general perspectives on the ECoG platform; describes the different electrophysiological features that can be detected in ECoG; elaborates on the signal acquisition issues, protocols, and online performance of ECoG-based BCI studies to date; presents important limitations of current ECoG studies; discusses opportunities for further research; and finally presents a vision for eventual clinical implementation. In summary, the studies presented to date strongly encourage further research using the ECoG platform for basic neuroscientific research, as well as for translational neuroprosthetic applications.
在过去的二十年中,许多研究表明,人类和动物可以使用脑信号通过脑机接口(BCI)将其意图传达给计算机。BCI 系统测量脑活动的特定特征,并将其转换为控制信号,以驱动输出。在 BCI 研究中最常使用的传感器模式是头皮上的脑电图(EEG)记录和皮层内的单个神经元记录。在过去的十年中,越来越多的研究探索了直接从大脑表面记录的脑电描记术(ECoG)活动的使用。ECoG 引起了极大的兴趣,因为它已经被证明可以反映实际和想象的动作的特定细节,并且因为其技术特征应该很容易支持人类中 BCI 系统的强大和慢性实施。这篇综述提供了 ECoG 平台的一般观点;描述了可以在 ECoG 中检测到的不同电生理特征;详细阐述了迄今为止基于 ECoG 的 BCI 研究的信号采集问题、协议和在线性能;提出了当前 ECoG 研究的重要局限性;讨论了进一步研究的机会;最后提出了最终临床实施的愿景。总之,迄今为止提出的研究强烈鼓励使用 ECoG 平台进行基础神经科学研究以及神经假体应用的进一步研究。