Suppr超能文献

基于单层、开孔、原始 PEDOT:PSS 的保形脑植入物,用于完全兼容 MRI 的神经接口。

Monolayer, open-mesh, pristine PEDOT:PSS-based conformal brain implants for fully MRI-compatible neural interfaces.

机构信息

Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, 16802, State College, PA, USA; Center for Neural Engineering, The Pennsylvania State University, University Park, 16802, State College, PA, USA.

出版信息

Biosens Bioelectron. 2024 Sep 15;260:116446. doi: 10.1016/j.bios.2024.116446. Epub 2024 May 28.

Abstract

Understanding brain function is essential for advancing our comprehension of human cognition, behavior, and neurological disorders. Magnetic resonance imaging (MRI) stands out as a powerful tool for exploring brain function, providing detailed insights into its structure and physiology. Combining MRI technology with electrophysiological recording system can enhance the comprehension of brain functionality through synergistic effects. However, the integration of neural implants with MRI technology presents challenges because of its strong electromagnetic (EM) energy during MRI scans. Therefore, MRI-compatible neural implants should facilitate detailed investigation of neural activities and brain functions in real-time in high resolution, without compromising patient safety and imaging quality. Here, we introduce the fully MRI-compatible monolayer open-mesh pristine PEDOT:PSS neural interface. This approach addresses the challenges encountered while using traditional metal-based electrodes in the MRI environment such as induced heat or imaging artifacts. PEDOT:PSS has a diamagnetic property with low electrical conductivity and negative magnetic susceptibility similar to human tissues. Furthermore, by adopting the optimized open-mesh structure, the induced currents generated by EM energy are significantly diminished, leading to optimized MRI compatibility. Through simulations and experiments, our PEDOT:PSS-based open-mesh electrodes showed improved performance in reducing heat generation and eliminating imaging artifacts in an MRI environment. The electrophysiological recording capability was also validated by measuring the local field potential (LFP) from the somatosensory cortex with an in vivo experiment. The development of neural implants with maximized MRI compatibility indicates the possibility of potential tools for future neural diagnostics.

摘要

理解大脑功能对于深入理解人类认知、行为和神经紊乱至关重要。磁共振成像(MRI)是探索大脑功能的强大工具,可以提供有关其结构和生理学的详细信息。将 MRI 技术与电生理记录系统相结合,可以通过协同作用增强对大脑功能的理解。然而,由于 MRI 扫描时存在强大的电磁(EM)能量,将神经植入物与 MRI 技术集成存在挑战。因此,MRI 兼容的神经植入物应在不影响患者安全和成像质量的前提下,促进实时高分辨率地对神经活动和大脑功能进行详细研究。在这里,我们介绍了完全 MRI 兼容的单层开放式原始 PEDOT:PSS 神经接口。这种方法解决了在 MRI 环境中使用传统金属基电极时遇到的挑战,例如感应热或成像伪影。PEDOT:PSS 具有抗磁性,电导率低,磁导率为负,与人体组织相似。此外,通过采用优化的开放式结构,可以显著减少由 EM 能量产生的感应电流,从而提高 MRI 兼容性。通过模拟和实验,我们基于 PEDOT:PSS 的开放式电极在减少 MRI 环境中的热生成和消除成像伪影方面表现出了更好的性能。通过体内实验测量来自感觉皮层的局部场电位(LFP),还验证了电生理记录能力。具有最大 MRI 兼容性的神经植入物的开发表明了未来神经诊断的潜在工具的可能性。

相似文献

10
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.使用患者特异性截骨导向器的前路全踝关节置换术。
JBJS Essent Surg Tech. 2025 Aug 15;15(3). doi: 10.2106/JBJS.ST.23.00027. eCollection 2025 Jul-Sep.

本文引用的文献

6
9
MRI magnetic compatible electrical neural interface: From materials to application.MRI磁兼容电神经接口:从材料到应用
Biosens Bioelectron. 2021 Dec 15;194:113592. doi: 10.1016/j.bios.2021.113592. Epub 2021 Sep 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验