Suppr超能文献

一种融合时间和频率特征的双分支卷积神经网络用于运动想象脑电信号解码

A Two-Branch CNN Fusing Temporal and Frequency Features for Motor Imagery EEG Decoding.

作者信息

Yang Jun, Gao Siheng, Shen Tao

机构信息

School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China.

出版信息

Entropy (Basel). 2022 Mar 8;24(3):376. doi: 10.3390/e24030376.

Abstract

With the development of technology and the rise of the meta-universe concept, the brain-computer interface (BCI) has become a hotspot in the research field, and the BCI based on motor imagery (MI) EEG has been widely concerned. However, in the process of MI-EEG decoding, the performance of the decoding model needs to be improved. At present, most MI-EEG decoding methods based on deep learning cannot make full use of the temporal and frequency features of EEG data, which leads to a low accuracy of MI-EEG decoding. To address this issue, this paper proposes a two-branch convolutional neural network (TBTF-CNN) that can simultaneously learn the temporal and frequency features of EEG data. The structure of EEG data is reconstructed to simplify the spatio-temporal convolution process of CNN, and continuous wavelet transform is used to express the time-frequency features of EEG data. TBTF-CNN fuses the features learned from the two branches and then inputs them into the classifier to decode the MI-EEG. The experimental results on the BCI competition IV 2b dataset show that the proposed model achieves an average classification accuracy of 81.3% and a kappa value of 0.63. Compared with other methods, TBTF-CNN achieves a better performance in MI-EEG decoding. The proposed method can make full use of the temporal and frequency features of EEG data and can improve the decoding accuracy of MI-EEG.

摘要

随着技术的发展和元宇宙概念的兴起,脑机接口(BCI)已成为研究领域的热点,基于运动想象(MI)脑电图的BCI受到广泛关注。然而,在MI-EEG解码过程中,解码模型的性能有待提高。目前,大多数基于深度学习的MI-EEG解码方法不能充分利用EEG数据的时域和频域特征,导致MI-EEG解码准确率较低。为了解决这一问题,本文提出了一种双分支卷积神经网络(TBTF-CNN),它可以同时学习EEG数据的时域和频域特征。对EEG数据的结构进行重构,简化了CNN的时空卷积过程,并采用连续小波变换来表达EEG数据的时频特征。TBTF-CNN融合从两个分支学习到的特征,然后将其输入到分类器中对MI-EEG进行解码。在BCI竞赛IV 2b数据集上的实验结果表明,所提出的模型平均分类准确率达到81.3%,kappa值为0.63。与其他方法相比,TBTF-CNN在MI-EEG解码方面取得了更好的性能。该方法能够充分利用EEG数据的时域和频域特征,提高MI-EEG的解码准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d445/8947711/85733964234c/entropy-24-00376-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验