Suppr超能文献

使用经济实惠的粒子传感器监测和确保受控环境中的工人健康。

Monitoring and Ensuring Worker Health in Controlled Environments Using Economical Particle Sensors.

机构信息

Escuela Técnica Superior de Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, C/Ríos Rosas, 21, 28003 Madrid, Spain.

Laboratorio Oficial para Ensayos de Materiales de Construcción (LOEMCO), C/Eric Kandell, 1, 28906 Getafe, Spain.

出版信息

Sensors (Basel). 2024 Aug 14;24(16):5267. doi: 10.3390/s24165267.

Abstract

Nowadays, indoor air quality monitoring has become an issue of great importance, especially in industrial spaces and laboratories where materials are handled that may release particles into the air that are harmful to health. This study focuses on the monitoring of air quality and particle concentration using low-cost sensors (LCSs). To carry out this work, particulate matter (PM) monitoring sensors were used, in controlled conditions, specifically focusing on particle classifications with PM2.5 and PM10 diameters: the Nova SDS011, the Sensirion SEN54, the DFRobot SEN0460, and the Sensirion SPS30, for which an adapted environmental chamber was built, and gaged using the Temtop M2000 2nd as a reference sensor (SRef). The main objective was to preliminarily assess the performance of the sensors, to select the most suitable ones for future research and their possible use in different work environments. The monitoring of PM2.5 and PM10 particles is essential to ensure the health of workers and avoid possible illnesses. This study is based on the comparison of the selected LCS with the SRef and the results of the comparison based on statistics. The results showed variations in the precision and accuracy of the LCS as opposed to the SRef. Additionally, it was found that the Sensirion SEN54 was the most suitable and valuable tool to be used to maintain a safe working environment and would contribute significantly to the protection of the workers' health.

摘要

如今,室内空气质量监测已成为一个非常重要的问题,特别是在处理可能会释放出有害健康的空气颗粒物的工业空间和实验室中。本研究重点关注使用低成本传感器(LCS)监测空气质量和颗粒物浓度。为了开展这项工作,使用了颗粒物(PM)监测传感器,在受控条件下,特别是针对 PM2.5 和 PM10 直径的颗粒物分类进行了监测:Nova SDS011、Sensirion SEN54、DFRobot SEN0460 和 Sensirion SPS30,为此构建了一个适应的环境室,并使用 Temtop M2000 2nd 作为参考传感器(SRef)进行了测量。主要目标是初步评估传感器的性能,选择最适合未来研究和可能在不同工作环境中使用的传感器。监测 PM2.5 和 PM10 颗粒物对于确保工人的健康和避免可能的疾病至关重要。本研究基于所选 LCS 与 SRef 的比较以及基于统计数据的比较结果。结果表明,与 SRef 相比,LCS 的精度和准确性存在差异。此外,发现 Sensirion SEN54 是最适合和有价值的工具,可用于维护安全的工作环境,并将为保护工人的健康做出重大贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfbd/11359958/74a709d2705f/sensors-24-05267-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验