Suppr超能文献

利用开源遥感数据在国家和地区层面上开发 PM 和 PM 预测模型。

Developing PM and PM prediction models on a national and regional scale using open-source remote sensing data.

机构信息

Department of Civil, Building and Environmental Engineering, Sapienza University of Rome, Rome, Italy.

Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padua, Padova, Italy.

出版信息

Environ Monit Assess. 2023 May 6;195(6):644. doi: 10.1007/s10661-023-11212-x.

Abstract

Clean air is the precursor to a healthy life. Air quality is an issue that has been getting under its well-deserved spotlight in the last few years. From a remote sensing point of view, the first Copernicus mission with the main purpose of monitoring the atmosphere and tracking air pollutants, the Sentinel-5P TROPOMI mission, has been widely used worldwide. Particulate matter of a diameter smaller than 2.5 and 10 μm (PM and PM) significantly determines air quality. Still, there are no available satellite sensors that allow us to track them remotely with high accuracy, but only using ground stations. This research aims to estimate PM and PM using Sentinel-5P and other open-source remote sensing data available on the Google Earth Engine (GEE) platform for heating (December 2021, January, and February 2022) and non-heating seasons (June, July, and August 2021) on the territory of the Republic of Croatia. Ground stations of the National Network for Continuous Air Quality Monitoring were used as a starting point and as ground truth data. Raw hourly data were matched to remote sensing data, and seasonal models were trained at the national and regional scale using machine learning. The proposed approach uses a random forest algorithm with a percentage split of 70% and gives moderate to high accuracy regarding the temporal frame of the data. The mapping gives us visual insight between the ground and remote sensing data and shows the seasonal variations of PM and PM. The results showed that the proposed approach and models could efficiently estimate air quality.

摘要

清洁空气是健康生活的前提。空气质量是近年来备受关注的一个问题。从遥感的角度来看,第一颗以监测大气和跟踪空气污染物为主要目的的哥白尼任务卫星——哨兵-5P 上的 Tropomi 任务,已经在全球范围内得到了广泛应用。直径小于 2.5 和 10 微米的颗粒物(PM 和 PM)显著决定了空气质量。然而,目前还没有可用的卫星传感器可以让我们远程高精度地跟踪它们,只能使用地面站。本研究旨在使用 Sentinel-5P 和 Google Earth Engine(GEE)平台上其他可用的开源遥感数据估算 PM 和 PM,研究地点为克罗地亚共和国,时间分别为 2021 年 12 月、2022 年 1 月和 2 月的供暖季(供暖季)以及 2021 年 6 月、7 月和 8 月的非供暖季。国家连续空气质量监测网络的地面站被用作起点和地面实况数据。将每小时的原始数据与遥感数据匹配,并在国家和地区尺度上使用机器学习训练季节性模型。该方法使用随机森林算法,百分比分割为 70%,在数据的时间框架内给出了中等至高度的准确性。该映射使我们能够在地面和遥感数据之间获得直观的了解,并显示 PM 和 PM 的季节性变化。结果表明,该方法和模型可以有效地估算空气质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49cd/10164030/9d3efd52c7e4/10661_2023_11212_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验