Suppr超能文献

利用一锅法羟乙基纤维素驱动的绿色合成重新设计纳米银技术。

Re-designing nano-silver technology exploiting one-pot hydroxyethyl cellulose-driven green synthesis.

作者信息

Blosi M, Brigliadori A, Ortelli S, Zanoni I, Gardini D, Vineis C, Varesano A, Ballarin B, Perucca M, Costa A L

机构信息

National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics, (CNR-ISSMC), Faenza (RA), Italy.

National Research Council of Italy, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (CNR-STIIMA), Biella, Italy.

出版信息

Front Chem. 2024 Aug 14;12:1432546. doi: 10.3389/fchem.2024.1432546. eCollection 2024.

Abstract

Re-designing existing nano-silver technologies to optimize efficacy and sustainability has a tangible impact on preventing infections and limiting the spread of pathogenic microorganisms. Advancements in manufacturing processes could lead to more cost-effective and scalable production methods, making nano-silver-based antimicrobial products more accessible in various applications, such as medical devices, textiles, and water purification systems. In this paper, we present a new, versatile, and eco-friendly one-pot process for preparing silver nanoparticles (AgNPs) at room temperature by using a quaternary ammonium salt of hydroxyethyl cellulose (HEC), a green ingredient, acting as a capping and reducing agent. The resulting nano-hybrid phase, AgHEC, consists of AgNPs embedded into a hydrogel matrix with a tunable viscosity depending on the conversion grade, from ions to nanoparticles, and on the pH. To investigate the synthesis kinetics, we monitored the reaction progress within the first 24 h by analyzing the obtained NPs in terms of particle size (dynamic light scattering (DLS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM)), Z-potential (ELS), surface plasmon resonance (UV-VIS), crystallographic phase (XRD), viscosity, and reaction yield (inductively coupled plasma-optical emission spectrometry (ICP-OES)). To explore the design space associated with AgHEC synthesis, we prepared a set of sample variants by changing two independent key parameters that affect nucleation and growth steps, thereby impacting the physicochemical properties and the investigated antimicrobial activity. One of the identified design alternatives pointed out an improved antimicrobial activity in the suspension, which was confirmed after application as a coating on nonwoven cellulose fabrics. This enhancement was attributed to a lower particle size distribution and a positive synergistic effect with the HEC matrix.

摘要

重新设计现有的纳米银技术以优化其功效和可持续性,对于预防感染和限制致病微生物的传播具有切实影响。制造工艺的进步可能会带来更具成本效益且可扩展的生产方法,使基于纳米银的抗菌产品在医疗设备、纺织品和水净化系统等各种应用中更容易获得。在本文中,我们展示了一种新型、通用且环保的一锅法工艺,该工艺在室温下使用绿色成分羟乙基纤维素(HEC)的季铵盐作为封端和还原剂来制备银纳米颗粒(AgNP)。所得的纳米杂化相AgHEC由嵌入水凝胶基质中的AgNP组成,其粘度可根据从离子到纳米颗粒的转化程度以及pH进行调节。为了研究合成动力学,我们通过分析所获得的纳米颗粒的粒径(动态光散射(DLS)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM))、Z电位(ELS)、表面等离子体共振(UV-VIS)、晶体相(XRD)、粘度和反应产率(电感耦合等离子体发射光谱法(ICP-OES))来监测前24小时内的反应进程。为了探索与AgHEC合成相关的设计空间,我们通过改变两个影响成核和生长步骤的独立关键参数制备了一组样品变体,并由此影响其物理化学性质和所研究的抗菌活性。其中一个确定的设计方案显示出悬浮液中抗菌活性有所提高,在将其作为涂层应用于非织造纤维素织物后得到了证实。这种增强归因于较低的粒径分布以及与HEC基质的正协同效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feec/11349673/c4f7411338f3/fchem-12-1432546-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验