文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Nanoparticle surface stabilizing agents influence antibacterial action.

作者信息

Ameh Thelma, Zarzosa Kusy, Dickinson Jake, Braswell W Evan, Sayes Christie M

机构信息

Department of Environmental Science, Baylor University, Waco, TX, United States.

United States Department of Agriculture, Animal and Plant Health Inspection Services, Plant Protection and Quarantine, Science and Technology, Insect Management and Molecular Diagnostics Laboratory, Edinburg, TX, United States.

出版信息

Front Microbiol. 2023 Feb 9;14:1119550. doi: 10.3389/fmicb.2023.1119550. eCollection 2023.


DOI:10.3389/fmicb.2023.1119550
PMID:36846763
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9947285/
Abstract

The antibacterial properties of nanoparticles are of particular interest because of their potential to serve as an alternative therapy to combat antimicrobial resistance. Metal nanoparticles such as silver and copper nanoparticles have been investigated for their antibacterial properties. Silver and copper nanoparticles were synthesized with the surface stabilizing agents cetyltrimethylammonium bromide (CTAB, to confer a positive surface charge) and polyvinyl pyrrolidone (PVP, to confer a neutral surface charge). Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and viable plate count assays were used to determine effective doses of silver and copper nanoparticles treatment against , and . Results show that CTAB stabilized silver and copper nanoparticles were more effective antibacterial agents than PVP stabilized metal nanoparticles, with MIC values in a range of 0.003 μM to 0.25 μM for CTAB stabilized metal nanoparticles and 0.25 μM to 2 μM for PVP stabilized metal nanoparticles. The recorded MIC and MBC values of the surface stabilized metal nanoparticles show that they can serve as effective antibacterial agents at low doses.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e09/9947285/893d796ada68/fmicb-14-1119550-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e09/9947285/97e0a98efe67/fmicb-14-1119550-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e09/9947285/222bfde8b27f/fmicb-14-1119550-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e09/9947285/bcb74f2bc61f/fmicb-14-1119550-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e09/9947285/fdc5e9de1293/fmicb-14-1119550-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e09/9947285/893d796ada68/fmicb-14-1119550-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e09/9947285/97e0a98efe67/fmicb-14-1119550-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e09/9947285/222bfde8b27f/fmicb-14-1119550-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e09/9947285/bcb74f2bc61f/fmicb-14-1119550-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e09/9947285/fdc5e9de1293/fmicb-14-1119550-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e09/9947285/893d796ada68/fmicb-14-1119550-g005.jpg

相似文献

[1]
Nanoparticle surface stabilizing agents influence antibacterial action.

Front Microbiol. 2023-2-9

[2]
Nanoparticle surface coatings produce distinct antibacterial effects that are consistent across diverse bacterial species.

Front Toxicol. 2023-3-3

[3]
Antimicrobial potency of differently coated 10 and 50 nm silver nanoparticles against clinically relevant bacteria Escherichia coli and Staphylococcus aureus.

Colloids Surf B Biointerfaces. 2018-6-18

[4]
Antibacterial properties of cetyltrimethylammonium bromide-stabilized green silver nanoparticles against methicillin-resistant Staphylococcus aureus.

Arch Pharm Res. 2015-10

[5]
Silver and Copper Nanoparticles Induce Oxidative Stress in Bacteria and Mammalian Cells.

Nanomaterials (Basel). 2022-7-14

[6]
Nanotechnology as a therapeutic tool to combat microbial resistance.

Adv Drug Deliv Rev. 2013-7-24

[7]
The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against .

Biomater Investig Dent. 2020-7-23

[8]
Formulation Optimization of Chitosan-Stabilized Silver Nanoparticles Using In Vitro Antimicrobial Assay.

J Pharm Sci. 2018-9-19

[9]
Antibacterial and antifungal action of CTAB-containing silica nanoparticles against human pathogens.

Int J Pharm. 2023-6-25

[10]
Antimicrobial effectiveness of silver nanoparticles co-stabilized by the bioactive copolymer pluronic F68.

J Nanobiotechnology. 2012-11-29

引用本文的文献

[1]
Assessing the Effects of Surface-Stabilized Zero-Valent Iron Nanoparticles on Diverse Bacteria Species Using Complementary Statistical Models.

J Funct Biomater. 2025-3-20

[2]
Silver Nanoparticles as Antimicrobial Agents in Veterinary Medicine: Current Applications and Future Perspectives.

Nanomaterials (Basel). 2025-1-27

[3]
CTAB-crafted ZnO nanostructures for environmental remediation and pathogen control.

Sci Rep. 2024-9-4

[4]
Re-designing nano-silver technology exploiting one-pot hydroxyethyl cellulose-driven green synthesis.

Front Chem. 2024-8-14

[5]
Antimicrobial and Cytotoxic Effect of Positively Charged Nanosilver-Coated Silk Sutures.

ACS Omega. 2024-4-8

[6]
Synthesis, Characterization and Potential Antimicrobial Activity of Selenium Nanoparticles Stabilized with Cetyltrimethylammonium Chloride.

Nanomaterials (Basel). 2023-12-13

[7]
Transition metal-based nanoparticles as potential antimicrobial agents: recent advancements, mechanistic, challenges, and future prospects.

Discov Nano. 2023-6-7

[8]
Gentamicin Sulfate Grafted Magnetic GO Nanohybrids with Excellent Antibacterial Properties and Recyclability.

Nanomaterials (Basel). 2023-4-20

[9]
Application of Biomedical Microspheres in Wound Healing.

Int J Mol Sci. 2023-4-15

本文引用的文献

[1]
Silver and Copper Nanoparticles Induce Oxidative Stress in Bacteria and Mammalian Cells.

Nanomaterials (Basel). 2022-7-14

[2]
Antimicrobial activity of nano-sized silver colloids stabilized by nitrogen-containing polymers: the key influence of the polymer capping.

RSC Adv. 2018-3-19

[3]
Synthesis and application of core-shell liquid metal particles: a perspective of surface engineering.

Mater Horiz. 2021-1-1

[4]
Aminomalononitrile-Assisted Multifunctional Antibacterial Coatings.

ACS Biomater Sci Eng. 2020-6-8

[5]
Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases.

Nat Commun. 2020-6-3

[6]
Characterizing the Brownian Diffusion of Nanocolloids and Molecular Solutions: Diffusion-Ordered NMR Spectroscopy vs Dynamic Light Scattering.

J Phys Chem B. 2020-5-21

[7]
Broadening Activity of Polymyxin by Quaternary Ammonium Grafting.

ACS Infect Dis. 2020-6-12

[8]
Copper oxide nanoparticles as an effective anti-biofilm agent against a copper tolerant marine bacterium, .

Biofouling. 2019-11-12

[9]
Recent Developments in Antibacterial Therapy: Focus on Stimuli-Responsive Drug-Delivery Systems and Therapeutic Nanoparticles.

Molecules. 2019-5-24

[10]
Nano-silver-incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing.

J Nanobiotechnology. 2018-11-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索