California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.
Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.
ACS Appl Mater Interfaces. 2024 Sep 11;16(36):47150-47162. doi: 10.1021/acsami.4c07612. Epub 2024 Aug 29.
Bacterial nanocellulose (BNC) is a durable, flexible, and dynamic biomaterial capable of serving a wide variety of fields, sectors, and applications within biotechnology, healthcare, electronics, agriculture, fashion, and others. BNC is produced spontaneously in carbohydrate-rich bacterial culture media, forming a cellulosic pellicle via a nanonetwork of fibrils extruded from certain genera. Herein, we demonstrate engineering BNC-based scaffolds with tunable physical and mechanical properties through postprocessing. Human skeletal muscle myoblasts (HSMMs) were cultured on these scaffolds, and in vitro electrical stimulation was applied to promote cellular function for tissue engineering applications. We compared physiologic maturation markers of human skeletal muscle myoblast development using a 2.5-dimensional culture paradigm in fabricated BNC scaffolds, compared to two-dimensional (2D) controls. We demonstrate that the culture of human skeletal muscle myoblasts on BNC scaffolds developed under electrical stimulation produced highly aligned, physiologic morphology of human skeletal muscle myofibers compared to unstimulated BNC and standard 2D culture. Furthermore, we compared an array of metrics to assess the BNC scaffold in a rigorous head-to-head study with commercially available, clinically approved matrices, Kerecis Omega3 Wound Matrix (Marigen) and Phoenix as well as a gelatin methacryloyl (GelMA) hydrogel. The BNC scaffold outcompeted industry standard matrices as well as a 20% GelMA hydrogel in durability and sustained the support of human skeletal muscle myoblasts in vitro. This work offers a robust demonstration of BNC scaffold cytocompatibility with human skeletal muscle cells and sets the basis for future work in healthcare, bioengineering, and medical implant technological development.
细菌纳米纤维素(BNC)是一种耐用、柔韧且具有动态特性的生物材料,能够在生物技术、医疗保健、电子、农业、时尚等多个领域、行业和应用中发挥作用。BNC 是在富含碳水化合物的细菌培养基中自发产生的,通过某些属挤出的纤维原纤维纳米网络在细胞外基质中形成纤维素膜。在此,我们通过后处理展示了具有可调节物理和机械性能的基于 BNC 的支架的工程设计。将人类骨骼肌成肌细胞(HSMM)培养在这些支架上,并施加体外电刺激以促进组织工程应用中的细胞功能。我们通过在制造的 BNC 支架上进行 2.5 维培养范式比较了人类骨骼肌成肌细胞的生理成熟标志物,与 2 维对照进行了比较。我们证明,在电刺激下培养的人类骨骼肌成肌细胞在 BNC 支架上产生的人类骨骼肌肌纤维具有高度对齐的、生理性形态,与未刺激的 BNC 和标准的 2 维培养相比。此外,我们比较了一系列指标,以在与商业上可获得的、临床批准的基质(Marigen 的 Kerecis Omega3 伤口基质和 Phoenix 以及明胶甲基丙烯酰(GelMA)水凝胶)的严格一对一研究中评估 BNC 支架。与行业标准基质以及 20%的 GelMA 水凝胶相比,BNC 支架在耐久性方面更具竞争力,并能在体外持续支持人类骨骼肌成肌细胞。这项工作为 BNC 支架与人骨骼肌细胞的细胞相容性提供了强有力的证明,并为医疗保健、生物工程和医疗植入技术发展的未来工作奠定了基础。