Suppr超能文献

使用分割方法集检测 X 光片上的椎体。

Using an Ensemble of Segmentation Methods to Detect Vertebral Bodies on Radiographs.

机构信息

From the Departments of Biomedical Informatics and Medical Education (B.C.C., Q.D., G.L.), University of Washington, Seattle, Washington.

Keck School of Medicine (J.R.), University of Southern California, Los Angeles, California.

出版信息

AJNR Am J Neuroradiol. 2024 Oct 3;45(10):1512-1520. doi: 10.3174/ajnr.A8343.

Abstract

BACKGROUND AND PURPOSE

Vertebral compression fractures may indicate osteoporosis but are underdiagnosed and underreported by radiologists. We have developed an ensemble of vertebral body (VB) segmentation models for lateral radiographs as a critical component of an automated, opportunistic screening tool. Our goal is to detect the approximate location of thoracic and lumbar VBs, including fractured vertebra, on lateral radiographs.

MATERIALS AND METHODS

The Osteoporotic Fractures in Men Study (MrOS) data set includes spine radiographs of 5994 men aged ≥65 years from 6 clinical centers. Two segmentation models, U-Net and Mask-RCNN (Region-based Convolutional Neural Network), were independently trained on the MrOS data set retrospectively, and an ensemble was created by combining them. Primary performance metrics for VB detection success included precision, recall, and F1 score for object detection on a held-out test set. Intersection over union (IoU) and Dice coefficient were also calculated as secondary metrics of performance for the test set. A separate external data set from a quaternary health care enterprise was acquired to test generalizability, comprising diagnostic clinical radiographs from men and women aged ≥65 years.

RESULTS

The trained models achieved F1 score of U-Net = 83.42%, Mask-RCNN = 86.30%, and ensemble = 88.34% in detecting all VBs, and F1 score of U-Net = 87.88%, Mask-RCNN = 92.31%, and ensemble = 97.14% in detecting severely fractured vertebrae. The trained models achieved an average IoU per VB of 0.759 for U-Net and 0.709 for Mask-RCNN. The trained models achieved F1 score of U-Net = 81.11%, Mask-RCNN = 79.24%, and ensemble = 87.72% in detecting all VBs in the external data set.

CONCLUSIONS

An ensemble model combining predictions from U-Net and Mask-RCNN resulted in the best performance in detecting VBs on lateral radiographs and generalized well to an external data set. This model could be a key component of a pipeline to detect fractures on all vertebrae in a radiograph in an automated, opportunistic screening tool under development.

摘要

背景与目的

椎体压缩性骨折可能表明患有骨质疏松症,但放射科医生对此诊断不足且报告不足。我们已经开发了一个用于侧位 X 光片的椎体(VB)分割模型的集合,作为自动机会性筛查工具的关键组成部分。我们的目标是在侧位 X 光片上检测胸椎和腰椎 VB 的大致位置,包括骨折的椎体。

材料与方法

男性骨质疏松性骨折研究(MrOS)数据集包括来自 6 个临床中心的 5994 名年龄≥65 岁男性的脊柱 X 光片。两个分割模型,U-Net 和 Mask-RCNN(基于区域的卷积神经网络),分别在 MrOS 数据集上进行回顾性训练,然后通过组合它们创建一个集合。VB 检测成功率的主要性能指标包括在保留测试集上进行对象检测的精度、召回率和 F1 分数。交并比(IoU)和骰子系数也被计算为测试集的性能的次要指标。从一家四级医疗机构获得了一个单独的外部数据集进行泛化性测试,该数据集包括来自≥65 岁男性和女性的诊断临床 X 光片。

结果

训练后的模型在检测所有 VB 时的 F1 分数分别为 U-Net = 83.42%、Mask-RCNN = 86.30%和集合 = 88.34%,在检测严重骨折的椎体时的 F1 分数分别为 U-Net = 87.88%、Mask-RCNN = 92.31%和集合 = 97.14%。训练后的模型在每个 VB 的平均 IoU 分别为 U-Net 的 0.759 和 Mask-RCNN 的 0.709。训练后的模型在外部数据集检测所有 VB 时的 F1 分数分别为 U-Net = 81.11%、Mask-RCNN = 79.24%和集合 = 87.72%。

结论

结合 U-Net 和 Mask-RCNN 预测的集合模型在检测侧位 X 光片上的 VB 方面表现最佳,并很好地推广到外部数据集。该模型可以成为正在开发的自动机会性筛查工具中检测 X 光片上所有椎体骨折的管道的关键组成部分。

相似文献

5

本文引用的文献

6
Convolutional neural network-based automated segmentation and labeling of the lumbar spine X-ray.基于卷积神经网络的腰椎X线自动分割与标注
J Craniovertebr Junction Spine. 2021 Apr-Jun;12(2):136-143. doi: 10.4103/jcvjs.jcvjs_186_20. Epub 2021 Jun 10.
7
The role of artificial intelligence in medical imaging research.人工智能在医学影像研究中的作用。
BJR Open. 2019 Nov 28;2(1):20190031. doi: 10.1259/bjro.20190031. eCollection 2020.
9
The epidemiology of osteoporosis.骨质疏松症的流行病学。
Br Med Bull. 2020 May 15;133(1):105-117. doi: 10.1093/bmb/ldaa005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验