Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Investigative and Forensic Sciences Research Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
Int J Biol Macromol. 2024 Oct;278(Pt 4):134983. doi: 10.1016/j.ijbiomac.2024.134983. Epub 2024 Aug 29.
Enzymatic treatment on lignocellulosic biomass has become a trend in preparing nanocellulose (NC), but the process must be optimized to guarantee high production yield and crystallinity. This study offers insights into an innovative protocol using cultivated fungal cellulase and xylanase to improve NC production from raw oil palm leaves (OPL) using five-factor-four-level Taguchi orthogonal design for optimizing parameters, namely substrate and enzyme loading, surfactant concentration, incubation temperature and time. Statistical results revealed the best condition for producing NC (66.06 % crystallinity, 43.59 % yield) required 10 % (w/v) substrate, 1 % (v/v) enzyme, 1.4 % (w/v) Tween-80, with 72-h incubation at 30 °C. Likewise, the highest sugar yield (47.07 %) was obtained using 2.5 % (w/v) substrate, 2.0 % (v/v) enzyme, 2.0 % (w/v) Tween-80, with 72-h incubation at 60 °C. The auxiliary enzymes used in this study, i.e., xylanase, produced higher crystallinity NC, showing widths between 8 and 12 nm and lengths >1 μm and sugars at 47.07 % yield. Thus, our findings proved that optimizing the single-step enzymatic hydrolysis of raw OPL could satisfactorily produce relatively crystalline NC and sugar yield for further transformation into bio-nanocomposites and biofuels. This study presented a simple, innovative protocol for NC synthesis showing characteristics comparable to the traditionally-prepared NC, which is vital for material's commercialization.
利用酶处理木质纤维素生物质已成为制备纳米纤维素(NC)的一种趋势,但为了保证高产量和高结晶度,该过程必须进行优化。本研究采用真菌纤维素酶和木聚糖酶对生油棕叶(OPL)进行改良,采用五因素四水平 Taguchi 正交设计优化参数,即底物和酶的加载量、表面活性剂浓度、孵育温度和时间,为利用培养真菌纤维素酶和木聚糖酶从生油棕叶制备纳米纤维素提供了新的见解。统计结果表明,生产 NC 的最佳条件(结晶度 66.06%,产率 43.59%)需要 10%(w/v)的底物、1%(v/v)的酶、1.4%(w/v)的吐温-80,在 30°C 下孵育 72 小时。同样,使用 2.5%(w/v)的底物、2.0%(v/v)的酶、2.0%(w/v)的吐温-80,在 60°C 下孵育 72 小时可获得最高的糖产量(47.07%)。本研究中使用的辅助酶,即木聚糖酶,产生了具有较高结晶度的 NC,其宽度在 8 到 12nm 之间,长度>1μm,糖产量为 47.07%。因此,我们的研究结果表明,优化生 OPL 的单步酶水解可以令人满意地生产出相对结晶的 NC 和糖产率,以进一步转化为生物纳米复合材料和生物燃料。本研究提出了一种简单、创新的 NC 合成方案,其特性与传统制备的 NC 相当,这对于材料的商业化至关重要。